

C.

	Choleste	rol (mg/dl)	Triglyceride (mg/dl)					
	Normal Chow	HF3w	Normal Chow	HF3w				
ApoE-/-	220 ± 67.5 (n=6)	587 ± 120.5 (n=3)	257.2±55.5	289 ± 13.7				
ApoE ^{_/} /Casp-1 ^{_/-}	320.4±64.6 (n=5)	623.25 ± 85.5 (n=4)	303 ± 28.2	328 ± 99.3				

(P>0.05, no statistical differences between the groups)

Figure I. Genotyping and characterization of ApoE^{-/-}**Casp-1**^{-/-} **mice. A.** Polymerase chain reaction (PCR) analysis of ApoE and caspase-1 (casp-1) gene expressions in ApoE^{-/-} mice and ApoE^{-/-}/Casp-1^{-/-} mice (left panel). Western blot analysis of pro-casp-1 expression in the aortas of ApoE^{-/-} mice and ApoE^{-/-}/Casp-1^{-/-} mice (right panel) (n=2). **B.** General phenotype of Casp-1 deficiency in ApoE^{-/-} mice after 0 or 3 weeks of HF diet: body weight (BW), ratio of heart weight (HW) to BW, and ratio of spleen weight (SW) to BW. **C.** Plasma levels of cholesterol and triglycerides in ApoE^{-/-} mice and ApoE^{-/-}/Casp-1^{-/-} mice after 3 weeks of HF diet (HF3w).

Figure II. Caspase-1 Deficiency Attenuates Cytokine and Chemokine Expression in ApoE^{-/}/Casp-1^{-/-} Mouse Aorta. A. Layout of the cytokine and chemokine array (R&D system). B. The representative array images of the aortic lysates from ApoE^{-/-} mice or ApoE^{-/-}/Casp-1^{-/-} mice. Two aortas were pooled together for blotting each array. The signal areas of a caspase-1 substrate, IL-1 β , in two arrays were selectively highlighted with red boxes. C. The quantification of cytokine and chemokine expressions. The variations of the manufacture's designate positive control (PC) spots between each array were used to determine the confidence interval of non-specific variations between samples (n=4 for each group). *, *p*<0.05 indicates the expression changes with statistical significance.

Α.

Figure III. No differences are found between the proliferation of macrophages/monocytes in ApoE^{-/-} Casp-1^{-/-} mouse aortas and that of ApoE^{-/-} mice as reflected by the cell size. Cell size is determined with the scales of forward scatter by flow cytometry as an estimate of cell proliferation status.

Α.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Α	P	С																					P	С
В	CXC	L13	C	5a	G-C	CSF	GM-	CSF	CC	CL1	CC	L11	sICA	AM-1	I	FN-γ	IL-1	α	١L	-1β	IL-	1ra	IL	-2
С	IL	-3	١L	-4	١L	-5	IL	-6	IL	7	IL-	10	۱Ŀ	-13	IL-	12p70	IL-1	16	١L·	-17	IL-	23	IL-	27
D	СХС	L10	СХС	CL11	CXC	CL1	M-0	CSF	СС	CL2	CC	L12	CX	CL9	С	CL3	.3 CCL4 MIP-2		CCL5		СХС	CL12		
Е	CCI	L17	TIM	IP-1	TN	F-α	TRE	EM-1																
F	P	С																					N	С

Β.

Figure IV. Caspase-1 Promotes Secretome of Pro-inflammatory Cytokines and Chemokines in MAECs. A. Layout of the cytokines and chemokine array purchased from R&D systems. B. Array images of the culture supernatant from WT MAECs or Casp-1^{-/-} MAECs cultured and primed with 50ng/ml LPS and treated with 200 µg/ml oxLDL for 24 hours followed with ATP (5mM) spike for 20 min. The array spots of IL-1 β were highlighted with the red boxes where the array spots of GM-CSF, CCL3, CCL5 and CXCL12 were indicated with the black ovals, respectively. **C.** The quantification of cytokine and chemokine expressions. The variations of the manufacture's designate positive control (PC) spots between each array were used to determine the confidence interval of nonspecific variations between samples (n=2 for each group). *, *p*<0.05 change with significance.

A. NIH-NCBI BLAST homology

	1	MADEVALALQAAGSPSAAAA-MEAASQPADEPLRKRPRRDGPGLGRSPGEPSAAV MADE ALALO GSPSAA A EAAS PA EPLRKRPRRDGPGL RSPGEP A V	54
	1	MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREV	60
	55	APAAAGCEAASAAAPAALWREAAGAAASAEREAPATAVAGDGDNGSGLRREPRAADD	111
	61	PAARGCPGAAAAALWREAEAEAAAAGGEQEAQ-ATAAAGGEGDNGPGLQGPSREPPLADN	119
Mouse SIRT1	112	FDDDEGEEEDEAAAAAAAAAGGYRDNLLLT	171
Human SIRT1	120	LYDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWIFR	179
	172	PRIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKD	231
	180	PRIGPTFFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKD	239
	232	INTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDI INTIEDAVKLLOECKKIIVLTGAGVSVSCGIPDFPSPDGIYAPLAVDFPDLPDPQAMFDI	291
	240	INTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDI	299
	292	EYFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRI	351
	300	EYFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRI	359
	352	LQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLP +OCHGSFATASCLICKYKVDCEAVDGDIFNQVVDCCDCCDCDADEDLAIMKDEIVFFGENLD	411
	360	IQCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLP	419
	412	EQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELL ROFHDAMKYDKDRVDLLIVIGSSLKVRPVALIPSSIPHEVPOILINBEDLPHLHFDVELL	471
	420	EQFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELL	479
	472	GDCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRPOKELVHLSELPPTPLHISEDSS GDCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPR ÖKEL +LSELPPTPLH+SEDSS	531
	480	GDCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSS	539
	532	SPERTVPQDSSVIATLVDQATNNNVNDLEVSES-SCVEEKPQEVQTSRNVENINVENP SPERT P DSSVI TL+DOA +N +DL+VSES C+EEKPOEVOTSRNVE+I +ENP	588
	540	SPERTSPPDSSVIVTLLDQAAKSN-DDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENP	598
	589	DFKAVGSSTADKNERTSVAETVRKCWPNRLAKEQISKRLEGNQYLFVPPNRYIFHGAEVY D K VGSST +KNERTSVA TVRKCWPNR+AKEOIS+RL+GNOYLF+PPNRYIFHGAEVY	648
	599	DLKNVGSSTGEKNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVY	658
	649	SDSEDDVLSSSSCGSNSDSGTCQSPSLEEPLEDESEIEEFYNGLEDDTERPECAGGSGFG SDSEDDVLSSSSCGSNSDSGTCOSPSLEEP+EDESEIEEFYNGLED+ + PE AGG+GFG	708
	659	SDSEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGLEDEPDVPERAGGAGFG	718
	709	ADGGDQEVVNEAIATRQELTDVNYPSDKS 737 DG DOR +NEAI+ +OE+TD+NYPS+KS	
	719	TDGDDQEAINEAISVKQEVTDMNYPSNKS 747	
Specie	<u>s C</u>	asp1 Cleavage Site	

Mouse SIRT1 D142 (Chalkiadaki, A, et al. Cell Metab., 2012)

Human SIRT1 D150 (BLAST search and confirmation by our previously published method: Shen, J, et al. Atherosclerosis, 2008)

Β.

Figure V. Generation of Cell-permeable non-Casp1 cleavable Sirt1 polypeptide. A. NIH-NCBI Blast homology search between mouse SIRT1 (upper) and human SIRT1 (lower). Caspase-1 cleavage site is highlighted in the red box. B. The non-cleavable Sirt1 polypeptide was generated with a single amino acid replacement in the sequence from 140-160 position of human SIRT1. Capase-1 cleavage site D150 from human SIRT1 was mutated to A150, rendering the peptide sequence non-casp1 cleavable.

Name of enzyme	Predicted No. of cleavages	Predicted Positions of cleavage sites	Regulated by Apocynin	PMID
Caspase-1	1	528	Yes	N/A
Caspase-3	1	242	Yes	19592621
Caspase-7	1	242	Not Tested	N/A
Thrombin	1	202	Not Tested	N/A
Caspase-10	0			N/A
Caspase-2	0			N/A
Caspase-4	0			N/A
Caspase-5	0			N/A
Caspase-6	0			N/A
Caspase-8	0			N/A
Caspase-9	0			N/A
Enterokinase	0			N/A
Factor Xa	0			N/A
Granzyme B	0			N/A

Table I. Predicated proteinases for human Sirt1 protein cleavage. The analysis with the PeptideCutter database predicted potential proteinases for human Sirt1 protein cleavages. Data are expressed as mean \pm SE. *, *p*<0.05, changes with statistical significance.

	PMID (An1		Microa	rray data obtained via	mining			
Gene ID	Target genes)	Fold Change	р	Compariso	n	PMID		
CCL1*†	22311973	1.456	0.0084	Sirt1 (-/-) vs.	WT	22715468		
CCL2*	8630731	2.364	0.0155	Sirt1 (-/-) vs. WT V	Vith HFD			
CCL3 ⁺	14747532	8.623	0.0000	Sirt1 (-/-) vs. WT V	Vith HFD	22002220		
CCL4*	18789903	2.736	0.0000	Sirt1 (-/-) vs. WT V	Vith HFD	22883230		
CCL17*	14747532	1.591	0.0010	Sirt1 (-/-) vs. WT V	Vith LFD			
GM-CSF*†	9190901	2.265	0.0084	Sirt1(-/+) vs. Sirt	:1(+/+)	22006157		
CXCL12 ⁺	17393416	1.813	0.0172	Sirt1 (-/-) vs.	WT	22169038		
	1727027	1.184	0.0469	Sirt1 (-/-) vs. WT V	Vith LFD	22883230		
ILZ*	1/3/93/	1.339	0.0258	Sirt1 (-/-) vs.	WT	22715469		
5013		1.372	0.0024	Sirt1 (-/-) vs.	WT	22/15408		
EBI3 (IL27)*	15728491	1.484	0.0032	Sirt1 (-/-) vs. WT V	Vith HFD			
()		2.014	0.0004	Sirt1 (-/-) vs. WT V	Vith LFD			
	10051488	3.018 0.0021 Sirt1 (-/-) vs. WT With		Vith HFD	22002220			
TIMP1*		1.435	0.0068	Sirt1 (-/-) vs. WT V	Vith LFD	22883230		
		1.638	0.0003	Sirt1 (-/-) vs. WT V	Vith HFD			
VCAM1‡	1379595	1.169	0.0445	Sirt1 (-/-) vs. WT V	Vith LFD			
		1.824	0.0285	Sirt1 (-/-) vs.	WT	221 (0020		
	0000000	1.433	0.0213	Sirt1 (-/-) vs.	WT	22169038		
ILT0.	9990060	1.306	0.0055	Sirt1 (-/-) vs. WT V	Vith LFD			
CCL12*	Not found	3.764	0.0054	Sirt1 (-/-) vs. WT V	Vith LFD	22883230		
*		1.317	0.0248	Sirt1 (-/-) vs. WT V	Vith LFD			
IL/*	Not found	2.262	0.0115	Sirt1(-/+) vs. Sirt1(+/+)		22006157		
Gene	Fold Change	р		Compares	PMID)		
Jun	1.778	0.000495	Sirt1 KO vs. WT with LFD 228832			30		
Fos	3.523	0.017899	Sirt1 K	O vs. WT with LFD	228832	30		
Fosl1	3.022	0.000628	Sirt1 KC	D vs. WT with HFD	228832	3230		

Table II. Caspase-1 induces upregulation of proinflammatory cytokines, chemokines and adhesion molecules via sirtuin 1 (Sirt1)-AP-1 pathway. A. Caspase-1-induced molecules have the AP-1 binding site in their promoters and Sirt1 gene deficiency increases the expression of caspase-1-induced molecules. The list of PubMed IDs showed that published papers experimentally identified AP-1 binding site in their promoters of caspase-1 induced genes except CCL-12 and IL-7. The database mining analysis of published microarray data of Sirt1 gene deficient (-/-) mice versus wild-type control mice demonstrated that Sirt1 deficiency increases the expression of caspase-1 induced genes. The symbols indicate the figures, in which the results showed that caspase-1 induced the gene upregulation/secretion: *Figure S2, †Figure S4, ‡Fig.4). **B.** Sirtuin 1 deficiency increases the expression of AP-1 gene expression. The AP-1 subunits expression was retrieved from Sirt1 KO (knockout) microarray dataset GSE30247.

Β.