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Supplementary Tables

Table 1: Four simulation scenarios used in the evaluation of the bias-variance decomposition. The simulation
scenarios are taken from Zou & Hastie (2005).

scenario n p β Structure of X

(1) 100 8 (3, 1.5, 0, 0, 2, 0, 0, 0) corr (i, j) = 0.5|i−j|

(2) 100 8 0.85 for all j corr (i, j) = 0.5|i−j|

(3) 50 40 βj =

{
0 j = (1, . . . , 10, 21, . . . , 30)
1 j = (11, . . . , 20, 31, . . . , 40)

corr (i, j) = 0.5 for all i and j

(4) 50 40 βj =

{
0 j = (1, . . . , 15)
1 j = (16, . . . , 40)

xj = Z1 + εxj , Z1 ∼ N (0, 1) j = 1, . . . , 5
xj = Z2 + εxj , Z2 ∼ N (0, 1) j = 6, . . . , 10
xj = Z3 + εxj , Z3 ∼ N (0, 1) j = 11, . . . , 15
xj ∼ N (0, 1) j = 16, . . . , 40

n, number of observations; p, number of predictors; β, vector of coefficients; X, matrix of predictors.

Table 2: Performance in out-of-sample prediction in the presence of variance heterogeneity.

Univariate HL RR-kr∗

% of SNPs ranked by univariate p-value 0.1% 0.5% 1 % 3% 4%

Mean PSE 1.16 1.19 1.21 1.31 1.33 1.12 1.13

HL, HyperLasso regression; RR-kr∗ , RR with the shrinkage parameter kr∗ .
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Supplementary Figures
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Figure 1: Comparing the mean-squared error of ridge regression estimates ob-
tained using the shrinkage parameter kr to those obtained using the shrinkage
parameter kHKB. Plotted are the proportion of replicates that using kr results
in smaller mean squared error than the estimates fitted using kHKB (equivalent
to kr with r = p).
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ROC curve: risk prediction in bipolar disorder data
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Figure 2: Receiver operating characteristic curve (ROC curve) plotting true
positive rate (TPR) against false positive rate (FPR) as the probability thresh-
old for classification as a case is varied. Area under the curve (AUC) statistics
are given in the legend, in parentheses. HLasso, HyperLasso regression; RR-kr∗ ,
RR with shrinkage parameter kr∗ ; univariate significance thresholds are for in-
clusion of individual SNPs in a multiple regression model. Regression models
were fitted on WTCCC-BD data, and evaluated on GAIN-BD data, with the
models evaluated on GAIN-BD data plotted here. For details of the study data
and methods used to fit the regression models, see main text.
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Supplementary Appendix A The number of principal components to include in kr

We address whether, when computing kr, it is more useful to include all non-zero PCs (of which there are at

most min(n, p)), or to include fewer than all the non-zero PCs. To this end we reanalyse the data analysed by

Hoerl et al. (1975), extending their results to compare the shrinkage parameter kr to kHKB. The data being

reanalysed are a ten-factor dataset consisting of 36 observations. These data were first discussed by Gorman &

Toman (1966) and are described in Daniel et al. (1999). They relate to the operation of a petroleum refining

unit. Following the approach taken by Hoerl et al. (1975), we use the ten-factor dataset as a design matrix

in a simulation study. In each replicate, a vector of regression coefficients with a specified squared length is

simulated. As in Hoerl et al. (1975) we find that, subject to normalisation, our results are not sensitive to this

value. Response variables are simulated at a range of signal-to-noise ratios, where the signal is the squared

length of the coefficients used to generate the data and the noise is the error in the responses, σ2. For each

signal-to-noise ratio, 1000 replicates are simulated, and results are reported as an average of these. Hoerl et al.

(1975) tabulate the mean squared error under both the linear and ridge models and report the percentage of

replicates linear regression gives rise to estimates β̂ with smaller smaller mean squared error than ridge estimates

β̂kHKB
with kHKB defined as in Equation (??). Following this approach, in Supplementary Figure 1 we plot the

percentage of replicates that kr results in ridge estimates β̂kr with smaller mean squared error than the estimates

obtained using the shrinkage parameter kHKB. From this figure we see that, when the signal to noise ratio is

not too low, estimates of β̂ with smaller mean squared error are obtained using kr with r < p than when using

kHKB.

Supplementary Appendix B Definitions of Degrees of Freedom in penalised regression models

Ordinary least squares regression (OLSR), ridge regression (RR) and principal components regression (PCR)

all result in models of the form given in Equation (??). For models that can be expressed in this form, several

definitions of effective degrees of freedom have been proposed (Hastie & Tibshirani, 1990).

The effective number of parameters, tr(H), gives an indication of the amount of fitting that H does. As

discussed in the main text, tr(HH′) can be defined as the effective degrees of freedom for variance. The degrees

of freedom for error, is given by n − tr(2H −HH′), thus the effective number of parameters in the degrees of
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freedom for error is tr(2H−HH′).

In OLSR, RR and PCR it can be shown that tr(HH′) ≤ tr(H) ≤ tr(2H−HH′) (Hastie & Tibshirani, 1990).

In OLSR, all three definitions of degrees of freedom reduce to to p, the number of parameters in the model. In

PCR, all three definitions reduce to r, the number of components retained in the PCR.

In RR with k > 0, the three definitions take values that follow the inequalities

tr(HH′) ≤ tr(H) ≤ tr(2H−HH′) (S1)

Proof.

H = X (X′X + kI) X′

= UDV′
(
VD2V′ + kI

)
VD′U′

= UDV′
(
V(D2 + k)V′

)
VD′U′

= U
[
D2/(D2 + k)

]
U′

tr(H) is the sum of the t diagonal elements of H. Each element is less than or equal to 1. tr(HH′) is also

the sum of t diagonal elements, this time of HH′, and each of which is the square of the corresponding diagonal

element of H. These diagonal elements each take a value between 0 and 1, thus the sum of their squares is

less than or equal to the sum of the original elements. A similar argument holds for the diagonal elements of

2H−HH′, where the sum is greater than or equal to the sum of the diagonal elements of H:

trace(H) =

t∑
j=1

λ2j/(λ
2
j + k) t = min(n, p)

trace(HH′) =

t∑
j=1

λ4j/(λ
2
j + k)2

trace(2H−HH′) =

t∑
j=1

λ2j (λ
2
j + 2k)/(λ2j + k)2
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Corollary: For a fixed value of the degrees of freedom, kHH′ < kH < k2H−HH′ where kHH′ is k such that

tr(HH′) = r, kH is k such that tr(H) = r and k2H−HH′ is k such that tr(2H−HH′) = r (for the same value of

r in all three cases).

Proof. We seek kH and kHH′ such that:

t∑
j=1

λ2j/(λ
2
j + kH) =

t∑
j=1

λ4j/(λ
2
j + kHH′)

2 = r

For each diagonal element j = 1 . . . t:

λ2(λ2 + kHH′)
2 = λ4(λ2 + kH)

Which simplifies to

(2 +
1

λ2
)kHH′ = kH

(2 + 1
λ2 ) > 0 so kH > kHH′

An analogous argument shows that k2H−HH′ > kH.

The larger the value of k, the further the ridge estimates are from the OLS estimates. This relationship holds

when the ridge estimates are returned to the orientation of the data. In RR with k > 0, the three definitions

of degrees of freedom follow the inequalities given in Equation (S1). For each of the definitions, it is possible to

choose the ridge parameter such that the degrees of freedom equal some specified value. Thus, choosing k such

that tr(HH′) = r (among the three definitions of degrees of freedom) results in regression coefficient estimates

that are closest to the OLS estimates.
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Supplementary Appendix C Logistic ridge regression by cyclic coordinate descent

In this section, we describe logistic RR and cyclic coordinate descent, the algorithm which we use to compute

logistic RR coefficients.

In the logistic regression model, let X be an n × p matrix of predictors with rows xi = (xi1, . . . , xip), as in

the linear regression model (Equation (??)). Let Y = (Y1, . . . , Yn)
′

be a vector of observed binary outcomes,

Yi ∈ {0, 1}. In biomedical data, this setup is common. The outcome variable represents disease status with

cases as 1 and controls as 0.

The ith response Yi is a Bernoulli variable with probability of success π (xi). The logistic regression model

relates the probability π (xi) that the ith observation is a case to the predictor variables as

Pr (Yi = 1|xi) = π (xi) =
exiβ

1 + exiβ
(S2)

where β is a vector of parameters to be estimated. Logistic RR estimates are obtained by maximising the

log-likelihood of the parameter vector, subject to a penalty term. The penalised log-likelihood to be maximised

is:

l(β) =

n∑
i=1

Yilog(π(xi)) +

n∑
i=1

(1− Yi)log(1− π(xi))− k‖β2‖ (S3)

The CLG algorithm [Zhang & Oles (2001)] is a cyclic coordinate descent algorithm for penalised logistic regres-

sion. The algorithm is described in detail by Genkin et al. (2007). The CLG algorithm is initiated by setting all

of the coefficient estimates to an initial value. Then, each coefficient is updated in turn whilst holding the rest

fixed. This has the advantage of avoiding the need for the inversion of large matrices. Convergence is checked

after each round of updating all of the coefficients.

In the CLG algorithm, cases are code as Yi = 1 and controls as Yi = −1. Finding the updated coefficient,

βnew
j that maximises the log-likelihood whilst keeping the other parameters fixed is equivalent to finding the z

that minimizes

g(z) =

(
n∑
i=1

f (ri + (z − βj)xijyi)

)
+
z2

2τ
(S4)

where τ = 1
2k and the ri = β′xiyi are computed using the current value of β and so are treated as constants.
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f(r) = ln(1 + exp(−r)), and penalty terms not involving z are constant and therefore omitted.

The βnew
j that gives the minimum value of g(·) does not have a closed form, so each component-wise update

requires an optimization process. Zhang & Oles (2001) use a modification of Newton’s method in computing

the component-wise updates. The proposed updates are adaptively bounded to prevent large updates in regions

where a quadratic is a poor approximation to the objective. Following Genkin et al. (2007) we use as the proposed

update:

∆νj =

∑n
i=1(xijyi)/(1 + exp(ri))− βj/τ∑n

i=1 x
2
ijF (ri,∆j |xij |) + 1/τ

(S5)

Genkin et al. (2007) use

F (r, δ) =


0.25 if |r| ≤ δ

1
2+exp(|r|−δ)+exp(δ−|r|) otherwise

(S6)

but other functions can be used (Zhang & Oles, 2001). We then apply the trust region restriction:

∆new
j = max(2|∆βj |,∆j/2) (S7)

to give the actual update:

∆βj =


−∆j if ∆νj < −∆j

∆νj if −∆j ≤ ∆νj ≤ ∆j

∆j if ∆j < ∆νj

(S8)

Convergence is declared when (
∑n
i=1 |∆ri|)/(1+

∑n
i=1 ri) < ε, where

∑n
i=1 |∆ri| is the sum of the changes in the

linear scores once all the coefficients have been updated, and ε is a user-specified tolerance. The CLG algorithm

is summarized in Algorithm 1.
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