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Disturbance modeling  

All the disturbances and parameter perturbations discussed in the main text are modeled by modifying the 

right-hand side of (1) to include external disturbance ∆(t)=[∆1(t), ∆2(t)]  
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Here are the corresponding h1, h2 and Δ for some disturbance scenarios (including the ones discussed in the 

main text): 

DS1. Cell termination at a constant rate: h1(x1,x2)=-vx1, ∆1(t)= 𝛥1̅ , ∆2(t)=0;  (Figure 2E; Figure 4E), 

DS2. Stochastic disturbance of stem cells only: h1(x1,x2)=vx1, ∆1(t)=σ1(t), ∆2(t)=0; (Figure 2G, 2H; Figure 

4G, 4H; Figure S2D; Figure S3D), 

DS3. Unexpected differentiation of stem cell into terminal cells: h1(x1,x2)=-vx1, ∆1(t)=σ1(t), 

h2(x1,x2)=h1(x1,x2) , ∆2(t)= −∆1(t);  (Figure S2B; Figure S3B), 

DS4. Constant inflow of stem cells: h1(x1,x2)=1, ∆1(t)= 𝛥1̅ , ∆2(t)=0; (Figure S2A; Figure S3A), 

DS5. Fluctuation on the decay rate constant of differentiated cells: ∆1(t)=0, h2(x1,x2)=-

x2, ∆2(t)=σ2(t); (Figure 2B-2D; Figure 4B-4D; Figure S2F; Figure S3F), 

DS6. Abrupt removal of terminal cells: ∆1(t)=0, h2(x1,x2)=-1, ∆2(t)= 𝛥̅2δDirac(t);  (Figure 2F; Figure 4F), 

where 𝛥1̅, 𝛥2̅ are constants; σ1(t), σ2(t), can be stochastic or deterministic processes; and δDirac(t) is the 

Dirac delta function. 

To facilitate the study of the system's response to disturbances, we start by decomposing the disturbance 

into a time-independent static component  𝛥̅=[𝛥1̅, 𝛥2̅]   and a time-dependent component δ(t)=[δ1(t), δ2(t)], 

so that  

∆(t)= 𝛥̅ +δ(t) 

(S1) 

(S2) 
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 (see Figure B1). The choice of  𝛥̅ is not unique and is selected here so that the fluctuations of ∆(t) are 

centered around 𝛥̅. We are interested in how the population of terminal cells x2 changes as a function of Δ(t) 

and how different choices of pr can help attenuate/reject such disturbances - i.e., minimize the perturbations 

of x2 for the nominal (undisturbed, Δ(t)=0 ) steady state value 𝑥̅2∗.  If we define 𝑥̅2 to be the steady state 

response of the terminal cell population x2(t) only to the static component of the disturbance, then we can 

decompose the disturbance response as follows:  

x2(t)= 𝑥̅2 + ξ2(t) 

 i.e., the response of the system to the disturbance is also be decomposed into a static response  𝑥̅2=Kpr(𝛥̅)  

and a dynamical response ξ2(t)=Hpr(t,∆,x(0)) (Figure B1).  

Kpr is a (static) nonlinear function of  that characterizes the dependence of the steady state value x2 as a 

function of a static disturbance (Figure S1A), x2 = Kpr(𝛥̅), and can be easily computed by solving algebraic 

equations: 
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where 𝑥̅1 is the steady state value of x1. For small 𝛥̅, using the implicit function theorem one can show that 

large α (slope of pr at steady state) minimizes |𝑥̅2- 𝑥̅2∗| (the steady state deviation from the unperturbed 

state) . As an illustration, consider the scenario DS1 with
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 (Figure S1). 

Hpr is a dynamic nonlinear function of the disturbance that characterizes the behavior of the system around 

the steady state as a function of the disturbances. For a specific choice of parameters and disturbances one 

(S3) 

(S4) 

3 
 



can numerically compute Hpr. Such numerical computations can help us get insight into the behavior of the 

system (see Figures 2, 3 and 4), but do not give a complete picture and become impractical for large 

numbers of parameters. Analytical solutions of Hpr are not available (except for some very special cases). 

However, we can study some properties of Hpr by looking at the effects of small disturbances.  

Note that if there are no external disturbances (i.e., ∆(t)=0),  then negative feedback control of pr by x2 

produces both stability and parameter robustness of (S2). The level of terminal cells at steady state becomes 

determined only by the relationship between x2 and pr, and not by the other parameters of the system, v and 

d, or by initial conditions.  Such “perfect” robustness is a result of integral-like control implemented by the 

feedback loop with integrator 1ln xσ =  and error e=(2 pr(x2) -1)v  (i.e., dσ/dt= (2pr(x2)-1)v=e). For error 

thus defined – a reasonable measure of deviations of terminal cell populations from the desired state –  the 

steady state condition becomes pr(x2)=1/2,  thus showing that this integral action assures perfect adaptation 

with respect to parameter changes of v, d, and to initial conditions. 

Dynamics near steady state 

Under the assumption of small disturbance δ(t), the dynamics of ξ2(t) are approximated by  
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subject to (S4), which can be rewritten as:  
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For disturbance DS4, 1
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. For all the other disturbances A∆=0 and 𝑥̅2d/𝑥̅1=v.  Next we 

consider the case when A∆=0 (i.e., all disturbances except for DS4). The analysis of DS4 yields the same 

conclusions (the functions are a bit messier).  

The renewal control model (pd(x2) = 1 − pr(x2)) is given by  
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and the fate control model (pd(x2) = κpr(x2)) by 
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where A0 describes the open loop dynamics (no feedback), and 2
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The dynamical systems for both fate and renewal control models can be more instructive in the Laplace 

(frequency) domain, where it also reveals some non-trivial properties of the system. Indeed, the effect of 

the disturbances δ1, δ2 on ξ2 (the perturbations of population of terminal cells from its nominal value) for 

renewal control is given by  

 2 1 1 2 2( ) ( ) ( ) ( ) ( )s G s s G s sξ δ δ= +   

where s is the frequency (Laplace) independent variable and  
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where C = [ 0 1 ], Bδ
(i) is the i-th column of Bδ, and I is the identity matrix.  

For s ≠ 0, s ≠  − d, we rewrite G1 = W1S, and G2 = W2S  where 
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(Figure B1).  S is called the sensitivity function of the closed loop of system (1), and L is called the open 

loop transfer function (or the open loop plant).  

Consider the case when the disturbance is a sinusoid δ1(t) = sinω1t. Then ||ξ2||∞: = suptξ2(t), the maximum 

perturbation of the terminal cells from the nominal value x2, is given by |G1(jω1)| where j = √ , i.e., the 

(S7) 
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magnitude of G1 at the frequency ω1. Similarly if δ2(t) = sinω2t, ||ξ2||∞ = |G2(jω2)|. In general, any 

disturbance can be expressed as a sum of sinusoidals and the sinusoidal frequencies ω compose what is 

called the disturbance spectrum. So for a general disturbance, the reduction of the perturbations ||ξ2||∞ is 

dependent on the magnitude of G1 and G2 across the disturbance spectrum. Let ∥G∥∞: = maxjω|G(jω)|. 

Then ∥G1∥∞ and ∥G2∥∞ are the maximum perturbation from the nominal value for any frequency of δ1 and 

δ2 respectively.  

W1 and W2 are independent of pr, and therefore the question of which choice of pr best rejects/attenuates a 

disturbance δ is equivalent to which choice of pr best reduces the magnitude of S across the disturbance 

spectrum. We show that for the branched topology, there are constrains that limit how small S can be made.  

Renewal control model 

In this case the specific transfer functions are given by 
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If L(z) = 0 then z is called the zeros of the system and if S(λ) = ∞, λ is called a pole of the closed loop 

system. In this case z = v > 0 is a zero of the system, and the system is called non-minimum phase (since z 

> 0 is a right half-plane (RHP) zero). The steady state error to a small constant perturbation disturbance δ1 

is given by |ξ2/δ1|=G1(0)=h1(𝑥̅1, 𝑥̅2)/(2αd𝑥̅2),  i.e., it is inversely proportional to the gain α. Therefore, more 

aggressive controllers result in smaller errors for disturbances of this type. In general we want G1 and G2 to 

be small across all frequencies ω (not just ω = 0). However the existence of the RHP zero z = v, imposes 

some hard constraints on how small G1 and G2 can be made. First, using maximum modulus theorem can 

be shown that 
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and therefore, there is a limit to how small the peaks of G1 and G2 can be made, independent of the choice 

of controller.  

Furthermore, S must satisfy a special form of Bode’s integral formula 

 2 2

2ln ( ) 0vS j d
v

ω ω
ω

=
+∫   

Since the weights W1 and W2 are independent of the controller, then (S8) is a general constraint on G1 and 

G2 (ln|Gi(jω)| = ln|Wi(jω)| + ln|S(jω)|, i = 1, 2). |S(jω)| < 1 implies an attenuation of noise at frequency ω, 

while |S(jω)| > 1 implies and amplification of noise at frequency ω. Equation (S8) is a type of conservation 

law, stating that the net disturbance attenuation and amplification must be balanced. The weight 2v in (S8) 

is a low pass filter, which makes the disturbance attenuation at low frequencies more costly (i.e., higher 

amplification at other frequencies).  

(S8) 
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Fate control model 

In this case the specific transfer functions are given by 
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Unlike renewal control, this system does not have a RHP zero (the zero is at z = − v). The Bode integral 

formula does not hold (since L is relative degree 1) and there are no restrictions on how strong the 

stabilizing feedback can be used (all positive gains are stabilizing).  

Regulated cell cycle rate for unbranched lineages  

Consider renewal control, where there is some additional regulation of the rate at which cells divide, i.e., v 

is a function of x2. The dynamics given by  
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pd(x2) = 1 − pr(x2). 

Let v: = v(𝑥̅2) and β =  − ∂v(𝑥̅2)∂𝑥̅2.  For a given β, the dynamics of (S9) near the steady state are given by  
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The response to these disturbances is given by the transfer functions G1 = W1S and G2 = W2S (for δ1 and δ2 

respectively), where  
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steady state). The extra regulation β is beneficial if β > 0 (i.e., negative regulation of cell cycle rate), since 
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it allows for larger stable gains α (i.e., stable gains are 0 < α < b + βx1), but it does not remove the 

fundamental limitations imposed by the RHP zero. 

Trans-differentiation or delayed differentiation as a “temporary” alternate fate 

Here we consider a branched lineage in which the alternative differentiated cell fate x3, at some later time, 
reconnects back to the original differentiated fate, either through trans-differentiation or delayed 
differentiation so that ultimately there is only one “terminally" differentiated cell type (x2).  Might this 
scheme reap the benefits of fate control without incurring the extra “cost” of producing a potentially 
unnecessary alternative cell type? 

The ODE model for such a scheme would be given by 
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where u is the rate at which x3 differentiate (or trans-differentiate) into x2  (we can add an additional death 

rate term into the third equation, but it doesn’t change the substance of the argument that follows).  If we 

apply the fate control scheme described above, with pd=κpr and negative feedback on pr, we find that as u 

gets very small, these equations approach the basic fate control model, whereas as u gets very large, the 

third equation becomes increasingly irrelevant, and the system approaches the renewal control model.  

 The sensitivity function is given by 
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For u>κv the system has two RHP zeros and the limitations of non-minimum phase systems apply.  On the 

other hand, for u<κv, the zeros move to the LHP and the system is minimum phase.  However, removal of 

the RHP zeros is necessary, but not sufficient, for overcoming the performance limitations of renewal 

control. Specifically for u close to κv, large gains destabilize the system (i.e., S has unstable poles in the 

RHP).  It is only for u much smaller than v and d that high gains become stabilizing and the performance 

(S10) 
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resembles that of a true fate-controlled system with non-reconnecting branches.  In other words, if the rate 

of trans-differentiation (or delayed differentiation) can be made sufficiently slow compared to the rate of 

the cell cycle (i.e. if cells hang around in the not-yet-fully differentiated state for many cell cycles), then 

robustness to disturbances can be achieved as if the situation was one of pure fate control.  However, there 

is a large price for this:  Slow u implies that the population of transient cells x3 at steady state is large 

(since  𝑥̅3 ∼ 1/𝑢 ).  Thus, only a fraction of the tissue can be composed of terminally differentiated cells at 

steady state (the larger the fraction, the poorer the performance).  If the tissue is of the "final-state” type, 

then of course the x3 cells do all eventually turn into x2 cells, but the requirement for slow u means that they 

can only do so very slowly (without the final tissue size robustness of fate control).  So, either way, the use 

of delayed or trans-differentiation to avoid permanent lineage branching brings with it either a large 

overhead of unnecessary cells, or a dramatic slowing of tissue generation and final tissue size sensitivity. 

 

Layered pathways  

The dynamics given by 
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subject to  

pa
(i)(x2i) = 1 − pr

(i)(x2i) − pd
(i)(x2i),  i = 1, 2, 3.  
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Supporting Figure Legends 

 

Figure S1. Steady state perturbations. (A) The new steady state population  𝑥̅2 as a function (Kpr ) of the 

static disturbance  𝛥̅. For aggressive feedback (large α) 𝑥̅2 is close to the unperturbed steady state 𝑥̅2∗.  

Shown is scenario DS1 ( h1(x)=-vx1, Δ1(t)= 𝛥̅1,  Δ2(t)=0) with 
( )2

2

1( )
1.5 0.5 /100r np x

x
=

+
, v=1 , d=0.1 

and n=1,2,4,10 . (B) For small 𝛥̅,  the perturbation from the unperturbed steady state is inversely 

proportional to the slope of  pr . Shown is a geometrical representation of this relationship for DS1 (constant 

removal of stem cells), resulting in |𝑥̅2- 𝑥̅2∗| ≈𝛥̅1/(2α). 

Figure S2. Renewal control disturbance response. (A) Scenario DS4. Aggressive feedback improves the 

steady state error |𝑥̅2- 𝑥̅2∗| but also induce oscillatory behavior. (B) Scenario DS3. Low levels of feedback 

can improve both the static error and dynamic variability of the response. For more aggressive feedback 

smaller the steady state error is countered by increased variability of the response. Shown in the left panel is 

the response for a single sample path realization of the stochastic process. In the right panel is shown the 

mean and the standard deviation for 5 different realizations. (C) The transmission function W1S for 

disturbances of type δ1 shows a tradeoff on the ability of the controller to reject low frequency components 

of δ1 by increasing the gain α , at the expense of amplifying frequencies components at a different range. 

(D) Scenario DS2 (δ1 type disturbance). Reduction in variance is seen for low gains, but as gains increase 

so is the variability of the response. Shown in the left panel is the response for a single sample path 

realization of the stochastic process. The mean and the standard deviation for 5 different realizations are 

shown in the right panel. (E) The transmission function W2S for disturbances of type δ2  shows a tradeoff on 

the ability of the controller to reject low frequency components of δ2 by increasing the gain α , at the 
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expense of amplifying frequencies components at a different range. (F) Scenario DS5 (δ2 type disturbance). 

Reduction in variance is seen for low gains, but as gains increase so is the variability of the response. 

Shown in the left panel is the response for a single sample path realization of the stochastic process. The 

mean and the standard deviation for 5 different realizations are shown in the right panel. 

 

Figure S3. Fate control disturbance response. (A) Scenario DS4. Aggressive feedback improves the steady 

state error |𝑥̅2- 𝑥̅2∗| without inducing oscillations. (B) Scenario DS3. Aggressive feedback results in both 

smaller steady state error and decreased variability of the response. Shown in the left panel is the response 

for a single sample path realization of the stochastic process. The mean and the standard deviation for 5 

different realizations are shown in the right panel. (C) The transmission function W1S for disturbances of 

type δ1 shows that for high gains α can reduce all disturbance frequencies. (D) Scenario DS2 (δ1 type 

disturbance). High gains decrease the variability of the response. Shown in the left panel is the response for 

a single sample path realization of the stochastic process. In the right panel is shown the mean and the 

standard deviation for 5 different realizations. (E) The transmission function W2S for disturbances of type 

δ2 shows that for high gains α can reduce all disturbance frequencies. (F) Scenario DS5 (δ2  type 

disturbance). High gains decrease the variability of the response. Shown in the left panel is the response for 

a single sample path realization of the stochastic process. The mean and the standard deviation for 5 

different realizations are shown in the right panel. 
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Supporting Tables 

Table S1.  Parameter values used in the simulations shown in Figures 2 and 4. 

Figure Panel Description v d h1 ∆ 1 h2 ∆2 

Figure 2 

b DS5 1 0.1 0 0 - x2 d-0.1d η2(t) 
c Oscillations in TD death 1 0.1 0 0 - x2 0.3d sin(0.02πt) 
d Oscillations in TD death 1 0.1 0 0 - x2 0.3d sin(0.08πt) 
e DS1 1 0.1 0.15x1 1 0 0 
f DS6 1 0.1 - - - - 

g, h DS2 1 0.1 x1 0.01η1(t)-1 0 0 
i |S| 1 0.1 - - - - 

Figure 4 

b DS5 2 0.1 0 0 - x2 d-0.1d η2(t) 
c Oscillations in TD death 1 0.05 0 0 - x2 0.3d sin(0.02πt) 
d Oscillations in TD death 1 0.05 0 0 - x2 0.3d sin(0.08πt) 
e DS1 1 0.05 0.15x1 1 0 0 
f DS6 1 0.05 - - - - 

g,h DS2 1 0.05 x1 0.01η1(t)-1 0 0 
i |S| 1 0.05 - - - - 

The dynamics are given by Eq. (S1) with 
( )2 *

2 2

1( )
1.5 0.5 /

r np x
x x

=
+

 , *
2 100x = . For the branched 

lineage (Figure 4) pd(x2)=0.5 pr(x2). The disturbances enter the system at t=0. At t=0 the system is at steady 

state x1(0)=10,  x2(0)=100, except for Figure 2G and 4G where x1(0)=10, x2(0)=50.  η1(t) is a birth-death 

process with birth rate 2.5 and death rate 0.025. η2(t) is a birth-death process with birth rate 2.5 and death 

rate 0.25.  DS1, DS2, DS5 and DS6 are disturbance types described in the Supporting Information. 
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Table S2. Parameter values used in the simulations shown in Figures 5 and 6. 

 Figure 5 Figure 6 
Panel A,C B,D E F 

Description renewal control fate control renewal control fate control 

pr
(1) ( )2

2

0.9
1.4 0.4 /100x+

 
( )100

2

1
1.8 0.2 /100x+

  
( )100

2

0.9
1.1 0.9 / 7663.1x+

 

( )100
2

1
1.5 0.5 / 57294x+

 

pd
(1) 0.9- pr

(1) 0.8 pr
(1) 0.9- pr

(1) 0.5 pr
(1) 

pr
(2) ( )2

4

0.85
1.35 0.35 / 50.41x+

 
( )100

4

1
1.8 0.2 / 74.07x+

 
( )100

4

0.9
1.1 0.9 / 2300.1x+

 
( )100

4

1
1.5 0.5 / 42704x+

 

pd
(2) 0.85- pr

(2) 0.8 pr
(2) 0.9- pr

(2) 0.5 pr
(2) 

pr
(3) ( )2

6

1
1.5 0.5 / 29.07x+

 
( )100

6

1
1.8 0.2 / 57.7x+

 
( )100

6

0.9
1.1 0.9 /1533.1x+

 
( )100

6

1
1.5 0.5 / 28201x+

 

pd
(3) 1- pr

(3) 0.8 pr
(3) 0.9- pr

(3) 0.5 pr
(3) 

(v1,v2,v3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) 
(d1,d2,d3) (0.06,0.09,0.121) (0.06,0.064,0.0107) (0,0,0) (0,0,0) 

h1
(1)(x1)∆(1)  (0.01η(1)(t)-1) x1 (0.01η(1)(t)-1) x1 -ρx1 (dotted plot) -ρx1 (dotted plot) 

h1
(2)(x3)∆(2) (0.01η(2)(t)-1) x3 (0.01η(2)(t)-1) x3 -ρx3 (dotted plot) -ρx3 (dotted plot) 

h1
(3)(x5)∆(3) (0.01η(3)(t)-1) x5 (0.01η(3)(t)-1) x5 -ρx5 (dotted plot) -ρx5 (dotted plot) 

The dynamics are given by Eq. (S10). The disturbances enter the system at t=0. For simulations in Figure 5, 

at t=0 the system is at the steady state x1=7.5, x2=100, x3=7.5, x4=75, x5=5, x6=60 and η(i) (t) , i=1,2,3 are 

birth-death processes with birth rate 2.5 and death rate 0.025 . For simulations in Figure 6E-6F, the initial 

population of stem cells x1 is 10 and there are no other types of cells. The desired final concentrations are 

60000, 45000, and 30000 for x2, x4, and x6 respectively. 
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Table S3.  Parameter values used in the simulations shown in Figures S2 and S3.   

Figure Panel Description v d h1 ∆ 1 h2 ∆2 

Figure S2 

a DS4 1 0.1 1 1 0 0 
b DS3 1 0.1 x1 0.015η2(t) x1 - ∆ 1 
c |W1S| 1 0.1 - - - - 
d DS2 1 0.1 x1 0.01η1(t)-1 0 0 
e |W2S| 1 0.1 - - - - 
f DS5 1 0.1 0 0 - x2 d-0.1d η2(t) 

Figure S3 

a DS4 1 0.05 1 1 0 0 
b DS3 1 0.05 x1 0.015η2(t) x1 - ∆ 1 
c |W1S| 1 0.05 - - - - 
d DS2 1 0.05 x1 0.01η1(t)-1 0 0 
e |W2S| 1 0.05 - - - - 
f DS5 2 0.1 0 0 - x2 d-0.1d η2(t) 

The dynamics are given by Eq. (S1) with 
( )2 *

2 2

1( )
1.5 0.5 /

r np x
x x

=
+

 , *
2 100x = . For the branched 

lineage (Figure 4) pd(x2)=0.5 pr(x2). The disturbances enter the system at t=0 . At t=0 the system is at steady 

state x1(0)=10,  x2(0)=100.  η1(t) is a birth-death process with birth rate 2.5 and death rate 0.025. η2(t) is a 

birth-death process with birth rate 2.5 and death rate 0.25.  DS1, DS2, DS5 and DS6 are disturbance types 

described in the Supporting Information. 
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Supporting Figures 

 

Figure S1 
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Figure S2 
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Figure S3 
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