

Supplemental Figure 1. Relative amount of XyG *O*-acetylation. Quantification is based on the relative abundance of XyG oligosaccharides detected by MALDI-TOF MS after digestion of wall material with a XyG-specific endoglucanase. The percent acetylation is the total relative quantity of the acetylated oligosaccharides (XXLG-Ac, XXFG-Ac, and XLFG-Ac) divided by the sum of oligosaccharides that can be *O*-acetylated (XXLG, XXLG-Ac, XXFG, XXFG-Ac, XLFG, XLFG-Ac). Error bars indicate standard deviation (n≥6); * indicates statistically significant difference from Col-0 (Student's T-Test, p<0.01).

Supplemental Figure 2. XyG oligosaccharide profiling of F2 plants from a cross between *axy9.1* and *Arabidopsis* ecotype Landsberg erecta (Ler). (A) Relative abundance of non-acetylated XLFG based on MALDI-TOF MS. Dashed lines indicate cutoff values used for calling the phenotype as mutant (*axy9.1*-like) or wild type (Col-0-like). (B) Histogram of the relative abundance of nonacetylated XLFG in the F2 population. (C) Segregation analysis of the F2 population.

Supplemental Figure 3. Mapping of *axy9.1*. (A) Col-0 allele frequency based on SSLP marker analysis (Supplemental Table 1). (B) Fine mapping of the region of Col-0-enriched region on chromosome 3 using six mutant plants with recombination events within the region of interest.

Supplemental Table 1. Markers used for genetic linkage analysis of *axy9.1*. Simple sequence length polymorphism (SSLP) markers were were obtained from www.arabidopsis.org. Cleaved amplified polymorphic sequence (CAPS) markers (bold) were based on the Col-0 reference genome and a list of SNPs present in the Landsberg erecta ecotype (www.arabidopsis.org). CAPS markers require digestion with EcoRI following the PCR reaction.

Supplemental Table 2. Genomic sequencing of *axy9.1.* Detected SNPs, relative to the Col-0 reference genome, were filtered against sequencing data from other *axy* mutants (Günl et al., 2011, Gille et al., 2011) to obtain a specific *axy9.1* SNP set. 652 of these SNPs were found to be homozygous based on detection frequency and 148 of the homozygous SNPs were predicted to result in amino acids changes. Of these 148 SNPs, two were located within the mapped region on chromosome 3.

Supplemental Table 3. Candidate SNPs for the basis of the *axy9.1* phenotype in the mapped region. Two out of the eight SNPs detected in genes within the mapped region result in predicted amino acid changes. T-DNA lines with insertions in these candidate genes were obtained and XyG acetylation was measured of leaf tissue relative to wild type. ¹Percent XyG acetylation of possible as a percentage relative to wild type, \pm standard deviation, $n = 4$.

Supplemental Figure 4. Gene and protein model of AXY9. (A) Gene model of *AXY9* (*At3g03210*) including the introduced point mutation in *axy9.1* and T-DNA insertion location in *axy9.2*. Striped boxes – untranslated regions; white box – coding sequence. (B) Protein model of AXY9 including the stop codon in *axy9.1* and the insertion in *axy9.2*. Shaded grey box – protein regions of interest. Striped box – aberrant amino acids for the predicted protein in *axy9.2.*

Supplemental Figure 5. Expression profiling of *AXY9* in the *AXY9* mutants in leaves. (A) Gene model of *AXY9* showing the location of the T-DNA insertion in the *axy9.2* allele and the positions of three PCR primer pairs before, spanning, and after the T-DNA insertion (PCR #1, #2, and #3 respectively) relative to the direction of transcription. (B) Qualitative RT-PCR using the three primer pairs for the indicated genotypes. Reverse transcriptase enzyme was include (+RT) or excluded (-RT) from cDNA preparations to check for the presence of genomic DNA contamination. Two independent replicates are shown for the cDNA samples prepared with reverse transcriptase. (C) Quantitative RT-PCR using the three primer pairs with SYBR green for quantification during amplification. The results were normalized to an internal control (*ACTIN 2*, *At3g18780*) and to Col-0. Error bars indicate standard error (n = 3).

Supplemental Figure 6. AXY9 maximum-likelihood phylogenetic tree. Between one and four putative AXY9 orthologs were identified in each land plant species from the Phytozome database.

Supplemental Figure 7. Alignment of AXY9 protein sequences. Protein sequences were obtained from Phytozome (www.phytozome.net) and aligned using MUSCLE (Edgar, 2004). Regions of note include the highly conserved N-terminus, the putative catalytic GDS motif (position 157), and the conserved DXXH motif at the C-terminus. The highly conserved N-terminus contains two hydrophobic stretches separated by four hydrophilic residues (SRNK in Arabidopsis). The mutation present in *axy9.1*, W276Stop, is marked with a red line. *Atha* – *Arabidopsis thaliana, Osat* – *Oryza sativa*, *Ppat* – *Physcomitrella patens*, *Smoe* – *Selaginella moellendorffii*.

Edgar, Robert C. "MUSCLE: multiple sequence alignment with high accuracy and high throughput." *Nucleic acids research* 32.5 (2004): 1792-1797.

Supplemental Figure 8. Alignment and sequence similarity of AXY9 and TBL protein sequences. Multiple sequence alignment (top) and pairwise percent identity and similarity values (bottom) of protein sequences obtained from Phytozome (www.phytozome.net). Multiple and pairwise alignments were done using MUSCLE (Edgar, 2004). Conservation is observed in the GDS and to a lesser extent the DXXH motifs. *Atha* – *Arabidopsis thaliana, Ppat* – *Physcomitrella patens*.

AthaTBL29 43

Edgar, Robert C. "MUSCLE: multiple sequence alignment with high accuracy and high throughput." *Nucleic acids research* 32.5 (2004): 1792-1797.

Supplemental Figure 9. 2D HSQC NMR spectrum of dissolved stem tissue. The ¹H (x-axis) / ¹³C (yaxis) NMR spectra for wild type (WT), Per-*O*-acetylated arabinoxylan from wheat, *axy9.1*, *axy9.2* and AXY9 OE in *axy9.2* mutants. Prominent peaks corresponding to known polysaccharide linkages are labeled (Cheng et al., 2013 & Chong et al., 2014). A quantification of the peaks related to acetylated polysaccharides is shown in Table 1.

GFP Chlorophyll merge AXY9-GFP Col-0 Fluorescence channel Genotype 10 μm

Supplemental Figure 10. Subcellular localization of AXY9-GFP in *Arabidopsis.* Confocal microscopy was used to image leaf tissue of stably transformed *Arabidopsis* plants expressing AXY9-GFP.

Supplemental Figure 11. Split-YFP controls. Confocal microscopy was used to image *N. benthamiana* leaf tissue infiltrated with split-YFP fusion constructs.

Supplemental Figure 12. Split-YFP AXY9 N-terminal fusions. Split-YFP AXY9 protein fusions (YFP_N-AXY9 and YFP_C-AXY9) were coexpressed with TMD-YFP_{N/C} and YFP_{N/C}-TMD in *N. benthamiana*. Leaf tissue was imaged for YFP fluorescence using a confocal microscope.

Supplemental Figure 13. Protease protection assay of internal and external Golgi controls. The YFP-TMD and TMD-YFP peptide fusions have been reported to result in cytosolic and lumenal orientations respectively for the YFP domain (Søgaard et al., 2012).

Supplemental Table 4. Primer sequences used for genotyping, expression profiling and plasmid construction.

Supplemental Table 5. Plasmid construction. The cloning method and destination vector used for construction of each plasmid are listed along with the template DNA and relevant references.

- Coutu, Catherine, et al. "pORE: a modular binary vector series suited for both monocot and dicot plant transformation." *Transgenic research* 16.6 (2007): 771-781.
- Curtis, Mark D., and Grossniklaus, U. "A gateway cloning vector set for high-throughput functional analysis of genes in planta." *Plant physiology* 133.2 (2003): 462-469.
- Gehl, Christian, et al. "New GATEWAY vectors for high throughput analyses of protein–protein interactions by bimolecular fluorescence complementation."*Molecular plant* 2.5 (2009): 1051-1058.
- Nakagawa, Tsuyoshi, et al. "Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation." *Journal of bioscience and bioengineering* 104.1 (2007): 34-41.
- Søgaard, Casper, et al. "GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues." *PloS one* 7.2 (2012): e31324.