
Supporting Information
Yuan et al. 10.1073/pnas.1424962112
The Velocity Profile of the External Flow
The axial velocity profile (u) of a fully developed, laminar flow in
a conduit with a rectangular cross-section is (1)
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where W, 2b, and μ are, respectively, the conduit’s width, the
conduit’s depth, and the liquid’s dynamic viscosity. −W/2 < y <
W/2. –b < z < b. The pressure gradient
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where Q is the volumetric flow rate. The velocity averaged over
the conduit’s depth
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: [S3]

The infinite series in Eq. S2 converges rapidly. In our calcula-
tions, we truncated the series after 100 terms. Fig. S1 depicts (A)
contours of axial velocity and (B) the depth-averaged velocity as
a function of distance from the side wall. The conduit’s dimen-
sions are the same as in our experiment (100 μm deep × 2.6 mm
wide). The flow rate Q = 3,000 μL/h.

Numerical Simulations
Because 3D simulations are time-consuming and the essence of
the rheotaxis phenomenon can be captured with a 2D model, we
carried out direct, 2D numerical simulations with the finite el-
ement program COMSOL to examine whether we can replicate
the phenomena that we observed in the experiments.
Because the Reynolds number associated with the swimming

Caenorhabditis elegans is small, we solve the Stokes equation

−∇p+ μ∇2u= 0: [S4]

The liquid is incompressible and the velocity field satisfies the
continuity equation

∇ · u= 0: [S5]

In the above, u is the velocity vector and p is the pressure.
We define the local coordinates xL and yL with their origin at the

center of mass of the swimmer. At any instant in time, the co-
ordinate xL is inclined with angle θ with respect to the conduit’s axis.
We approximate the C. elegans as a 2D, flexible, undulating sheet
with a uniform cross-section. The position of the swimmer’s skeleton
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is a function of the axial position xL. 0 ≤ xL ≤ λ. In the above, λ is
the wavelength of the undulating wave, b is the amplitude, and
f is the frequency. The swimmer’s thickness, wavelength, ampli-
tude, and frequency were set, respectively, to 69 μm, 1,005 μm,
112.5 μm, and 1.7 Hz to match the corresponding characteristics
of the actual swimmer. The swimmer is confined in a conduit
–W/2 < y < W/2, where W = 2.6 mm is the conduit’s width.
The swimmer translates with instantaneous horizontal (U) and

vertical (V) velocities as well as rotates with angular velocity ω
around its center of mass. All these velocities are not known
a priori and must be obtained as part of the solution process. The
boundary conditions consist of specified axial and vertical un-
dulating wave velocities along the swimmer’s body:
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Additionally, we specified a parabolic velocity profile with an av-
erage of 300 μm/s at the conduit’s inlet, zero outlet viscous stress,
and nonslip conditions at all solid surfaces. Both the conduit’s
inlet and outlet were located more than five wavelengths away
from the swimmer’s center of mass so that the locations of the
inlet and outlet had negligible effect on the computational results.
The instantaneous hydrodynamic force and torque are,

respectively,
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In the above, r is the radius vector from the swimmer’s center
of mass to a point on the animal’s surface and n̂ is an outward
unit vector on the swimmer’s surface. The integration is carried
out along the swimmer’s surface. I is the unit tensor.
To prevent the swimmer from penetrating the side walls, we

included a short-range repulsive (steric) force between the swim-
mer and the solid boundaries. To this end, discs (n = 21) were
distributed along the swimmer’s skeleton and a fast-decaying force
was defined between each disk and the solid boundaries:
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In the above, FLJ,i is the repulsive force experienced by the ith disk
and ysp, ytw, and ybw are, respectively, the vertical coordinates
of the discs, the top boundary, and the bottom boundary.
σtw = ytW − ysp;i − rhsp. σbW = ysp;i − ybW − rhsp. In the simulations,
we set « = 3.75 × 108 N/m, σ = 1 μm, rsp = 138 μm, and rhsp =
39.5 μm.
The total force and torque acting on the swimmer due to the

above repulsive force are, respectively,

FLJðtÞ=
Xn
i=1
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and
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where ri is the distance vector from the swimmer’s center of mass
to the ith disk’s center.
The unknown instantaneous translational velocities U and V

and the angular velocity ω are determined by requiring that no
net force and no net torque act on the swimmer. Because the
problem is linear, we use superposition. We construct four
auxiliary problems such that the sum of the solutions of these
problems is equivalent to the solution of the original problem.
The velocity fields associated with the auxiliary problems I, II,
III, and IV are denoted, respectively, as uI, uII, uIII, and uIV.
Each of the above velocity fields satisfies Eqs. S4 and S5. The
four auxiliary problems differ in the velocity conditions specified
along the swimmer’s surface and the conduit’s inlet.

Problem I:

uI;x = 1;   and  uI;y = 0: [S14]

Problem II:

uII;x = 0;   and  uII;y = 1: [S15]

Problem III:

uIII;x =−y;   and  uIII;y =−x: [S16]
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In the first three auxiliary problems, we specified zero velocity
at the conduit’s inlet and zero viscous stress at the conduit’s
outlet. In the last auxiliary problem, we specified a parabolic
velocity profile with an average of 300 μm/s at the conduit’s inlet
and zero viscous stress at the conduit’s outlet. Each of the four
auxiliary problems has well-defined boundary conditions and can
be solved independently. Once the auxiliary problems have been
solved, we calculate the corresponding instantaneous hydrody-

namic forces and torques acting on the swimmer. The instantaneous
steric forces and torques are calculated using Eqs. S11 and S12. We
denote the various forces and torques associated with problems I,
II, III, and IV as FI;x,FI;y,τI ; FII;x,FII;y,τII ; FIII;x, FIII;y,τIII ; and
FIV ;x,FIV ;y, and τIV . We denote the steric force and torque as FLJ
and τLJ .
The complete solution of the original problem is given by the

weighted sum of the solutions of the auxiliary problems:

u=UuI +VuII +ΩuIII +uIV : [S18]

The forces and torques acting on the swimmer are

Fx =UFI;x +VFII;x +ωFIII;x +FIV ;x; [S19]

Fy =UFI;y +VFII;y +ωFIII;y +FIV ;y +FLJ ; [S20]

and

τ=UτI +V τII +ωτIII + τIV + τLJ : [S21]

The unknown instantaneous velocities (U, V) and angular veloc-
ity (ω) are determined by setting the net forces and torques to
zero:

Fx =Fy = τ= 0: [S22]

To obtain the swimmer’s trajectory and orientation, we solve the
kinematic equations
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The time step used in the numerical calculations was always
smaller than 0.01 s (1.7% of the swimming period).
To verify the numerical code, we calculated the swimming

speed of an infinitely long waving sheet and compared the nu-
merical solution with Taylor’s analysis (2). In our computer
model we used periodic boundary conditions at the two ends
of the swimmer, effectively rendering the swimmer infinite in
length. The other boundaries of the computational domain were
set far enough from the swimmer to render variations in the
locations of the boundaries insignificant. Because Taylor’s so-
lution is valid only when the ratio between the gait amplitude (b)
and the wavelength (λ) is small, we expect a good agreement
between our simulation results and Taylor’s solution only when
b/ λ << 1. Fig. S2 depicts the swimmer’s velocity (U) normalized
with the wave velocity (VW) as a function of the dimensionless
gait amplitude λ. Our predicted velocity (red circles) agrees well
with Taylor’s analytical solution (blue line) when b/ λ < 0.06.
As another test, we considered a waving infinite sheet centered

between two parallel, infinite plates. The analytical solution for
this problem has been obtained by Katz (3), using lubrication
approximation. Fig. S3 depicts the propulsive speed normalized
with the wave speed as a function of W/(2b). b/λ = 0.03. The
symbols and solid line correspond, respectively, to the finite el-
ement predictions and Katz’s analytical solution. The two sol-
utions are in good agreement.
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Fig. S1. The velocity contours (A) and the depth-averaged velocity as a function of normalized distance from the side surface (B) in a uniform rectangular
conduit with the cross-sectional dimensions of our experimental apparatus.

Fig. S2. The predicted swimming speed of an infinite length waving sheet in an infinite medium predicted by COMSOL (red circles) and Taylor’s analytical
solution (blue line) as a function of the gait’s amplitude normalized with the wavelength.

Fig. S3. The velocity of a waving, confined, infinite sheet normalized with the wave speed as a function of the conduit’s half-width normalized with the wave
amplitude. b/λ = 0.03. The hollow circles and the solid line correspond, respectively, to the finite element solution and Katz’s analytical solution.
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Movie S1. Young adults migrating upstream in the presence of mild external flow (300 μL/h, 321 μm/s) in a 2.6-mm-wide conduit. Animals swimming along
the side surfaces occasionally exhibit synchronized motion. The flow is to the left. Play speed: 2× real time. There are more animals near the top of the channel
than its bottom, probably owing to the conduit inlet’s being closer to the channel’s top than to its bottom. (Scale bar: 1 mm.)

Movie S1

Movie S2. A young adult drifting in a high-velocity stream (3,000 μL/h, 3,210 μm/s) when near the conduit boundary. The conduit is 2.6 mm wide. Red arrows
indicate the position of the animal’s head. The flow is to the left. Play speed: real time. (Scale bar: 1 mm.)

Movie S2

Movie S3. A young adult drifting in a high velocity stream (3,000 μL/h, 3,210 μm/s) when away from the conduit’s boundary. The conduit is 2.6 mm wide. Red
arrows indicate the position of the animal’s head. The flow is to the left. Play speed: real time. (Scale bar: 1mm.)

Movie S3
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Movie S4. A young adult swimming in a fluid stream (460 μL/h, 2,130 μm/s) in a 0.6-mm-wide conduit. The conduit width is too small to accommodate
hydrodynamically induced rotation but wide enough for the animals to make deliberate turns. The flow is to the left. Play speed: 0.5× real time. (Scale bar:
1mm.)

Movie S4

Movie S5. A young adult performing an omega turn in a fluid stream (460 μL/h, 2,130 μm/s) in a conduit whose width (0.6 mm) is smaller than the length of
the animal (∼1 mm). The flow is to the left. Play speed: 0.5× real time. (Scale bar: 1 mm.)

Movie S5

Movie S6. Comparison of computer simulations and experimental observations. Play speed: real time. (Left, experiment). Young adult C. elegans reorients to
face against the flow in a mild fluid flow (300 μL/h, 321 μm/s). Red arrows denote the animal’s head. The flow is directed to the left. (Scale bar: 1 mm.) (Middle)
Numerical computations of a swimmer reorienting itself in the presence of external flow. The velocity magnitude is color-coded and the instantaneous
streamlines are depicted as black lines. The flow is to the left. (Right) Numerical computations of a swimmer reorienting itself in the presence of external flow.
The vorticity field is color-coded and the instantaneous streamlines are depicted as black lines. The flow is to the left. (Bottom) The swimmer’s orientation (θ) as
a function of time in the experiments (blue line) and the computer simulations (red line) are depicted as functions of time.

Movie S6
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