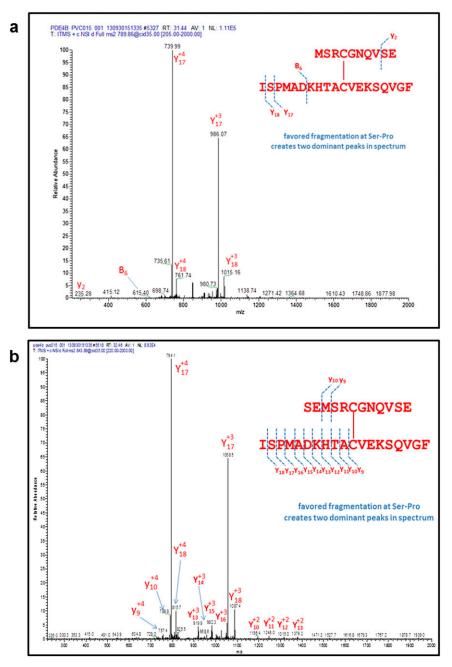

Supporting Information

Cedervall et al. 10.1073/pnas.1419906112

Fig. S1. LC-MS peptide mapping. Top, peptic digest of PDE4B_{cryst} with no DTT treatment; second, extracted ion plot for m/z = 789.615, corresponding to $[M+4H]^{4+}$ of two peptide fragments (264-273 and 600–618) linked by a disulfide bond; third, DTT-treated peptic digest of PDE4B_{cryst} and fourth, extracted ion plot as before for the DTT-treated sample. NL, normalized level. The reduced sample is a control as any peak identified as a disulfide linked fragment (second panel) is expected to be absent under reducing conditions (fourth panel). The identity of the DTT-sensitive fragment was confirmed by tandem-MS (Fig. S3).


а

VAS PNAS

-				
MAGLNDIFEA	QKIEWHENLY	FQGSDYKDDD	DKDLVPRGSM	ATFPGHSQRR
EAFLYRSDSD	YDLSPKAMSR	NSSLPSEQHG	DDLIVTPFAQ	VLASLRSVRN
NFTILTNLHG	TSNKRSPAAS	QPPVSRVNPQ	EESYQKLAME	TLEELDWALD
QLETIQT <mark>YRS</mark>	VSEMASNKFK	RMLNRELTHL	SEMSRCGNQV	SEYISNTFLD
KQNDVEIPSP	TQKDREKKKK	QQLMTQISGV	KKLMHSSSLN	NTSISRFGVN
TENEDHLAKE	LEDLNKWGLN	IFNVAGYSHN	RPLTAIMYAI	FQERDLLKTF
RISSDTFITY	MMTLEDHYHS	DVAYHNSLHA	ADVAQSTHVL	LSTPALDAVF
TDLEILAAIF	AAAIHDVDHP	GVSNQFLINT	NSELALMYND	ESVLENHHLA
VGFKLLQEEH	ADIFMNLTKK	QRQTLRKMVI	DMVLATDMSK	HMSLLADLKT
MVETKKVTSS	GVLLLDNYTD	RIQVLRNMVH	AADLSNPTKS	LELYRQWTDR
IMEEFFQQGD	KERERGMEIS	PMA DKHTA <mark>C</mark> V	EKSQVGFIDY	IVHPLWETWA
DLVQPDAQDI	LDTLEDNRNW	YQAMIPQAPA	PPLDEQNRDA	QGLMEKFQFE
LTL DEEDSEG	PEKEGEGHSY	FSSTKTLAVI	DPENRDSLGE	TDIDIATEDK
SPVDT				
÷				
b				

MAGLNDIFFA
QKIEWHENLYFQGSDYKDDDDKDLVPRGSMATFPGHSQRREAFLYRSDSDYDLSPKAMSRNSSLPSEQHGDDLIVTPFAQVLASLRSVRNNFTILTNLHGTSNKRSPAASQPPVSRVNPQEESYQKLAMETLEELDWALDQLETIQTYRSVSEMASNKFKRMLNRELTHLSEMSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKKKQQLMTQISGVKKLMHSSSLNNTSISRFGVNTENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTAIMYAIFQERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNSLHAADVAQSTHVLLSTALDAVFVGFKLLQEEHADIFMNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMWETKKVTSSGVLLLDNYTDRIQVLRNMVHAADLSNPTKSLELYRQWTDRIMEEFFQQEDKERERGMEISPMADKHTAGVEKSQVGFTDYIVHPLWETWADLVQPDAQDILDTLEDNRNWYQAMIPQAPAPPLDEQNRDAQGLMEKFQFELTLDEEDSGPEKEGEGHSYFSSTKTLAVIDPENRDSLGETDIDIATEDKSPVDTVGVGVGVGVG

Fig. 52. PDE4B_{cryst} sequence coverage in LC-MS. Red font color indicates sequence covered by simple (i.e., not cross-linked) peptides detected in LC-MS on (A) nonreduced and (B) reduced peptic digest of PDE4B_{cryst}. Cys267 is highlighted in green and Cys610 is highlighted in teal. The cysteines were not detected in the nonreduced sample, but were detected in the reduced sample.

Fig. S3. Tandem MS spectrum (collision-induced dissociation) of (A) 4+ charged peak with m/z = 789.86 identified as the disulfide-linked fragment of PDE4B_{cryst} linking peptides 264–273 and 600–618 (PDE4B1 numbering) and (B) 4+ charged peak with m/z = 843.89 identified as the fragment linking peptides 262–273 and 600–618. Major peaks in the spectrum support the identity assigned.

141	DYDLSPKAMSRNSSLPSEQHGDDLIVTE	FAQV	AS <mark>LR</mark> S <mark>VR</mark> NN	FTILTNLHGT-SNKRSPA	199	Q07343	PDE4B
153	DYDMSPKTMSRNSSVTSEAHAEDLIVTE	FAQVL	AS <mark>LR</mark> S <mark>VR</mark> SN	FSLLTNVPVP-SNKRSPL	211	P27815	PDE4A
	DYDLSPKSMSRNSSIASDIHGDDLIVTE					Q08499	PDE4D
127	DYELSPKAMSRNSSVASDLHGEDMIVT	FAQVL	AS <mark>LR</mark> TVRSN	VAALARQQCLGAAKQGPV	186	Q08493	PDE4C
		_		200032			
200	ASQPPVSRVNPQEESYQKLAMETLEE	WC <mark>L</mark> DQ	LETIQTYRS ^V	VSEMASNKFKRMLNRELT	259	Q07343	PDE4B
	ASQPPVSRVNPQEESYQKLAMETLEE GGPTPVCKATLSEETCQQLARETLEELI					Q07343 P27815	
212		WCLEQ	LETMQTYRS	VSEMASHKFKRMLNRELT	271	~	PDE4A

Fig. S4. Sequence alignment of the dimerization domains in human PDE4A to -D. The conserved polar residues that make intrachain salt bridges in the crystal structure are highlighted in yellow, and the conserved hydrophobic residues that constitute the core of the 4-helix bundle that forms the primary dimer interface in PDE4B_{cryst} are highlighted in red (UCR1) and green (UCR2). Sequence alignment was done in Uniprot.

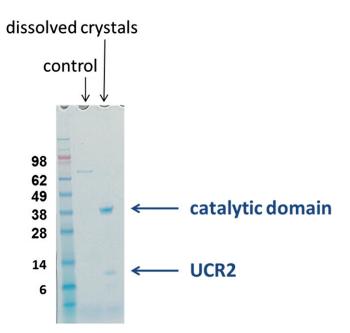


Fig. S5. Reducing SDS/PAGE analysis of dissolved PDE4B_{cryst} crystals showed that proteolytic cleavage had occurred during crystallization. N-terminal sequencing and LC-MS analysis of the excised gel bands showed them to be catalytic domain (*Upper*) and UCR2 (*Lower*).

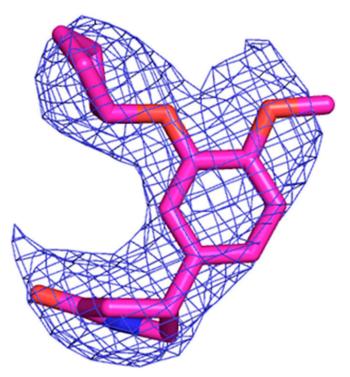
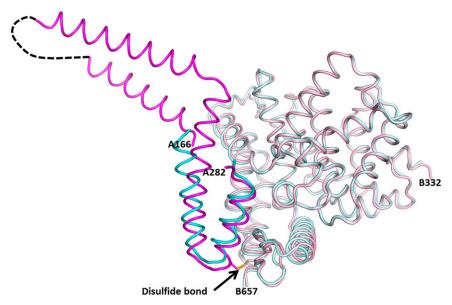



Fig. S6. Rolipram binding mode is well-defined in electron density maps. A (2Fo-Fc) map contoured at 1.4₅ around rolipram in the PDE4B_{cryst}-rolipram complex crystal structure (resolution 3.2 Å).

Fig. 57. Overlay of PDE4B_{cryst} on PDB ID 3G45. PDE4B_{cryst} is colored magenta and 3G45 is colored cyan with the catalytic domains of both proteins shown in lighter shades and the regulatory domains shown in darker shades. For PDE4B_{cryst}, the regulatory domain of subunit A (residues A166–A282) and the catalytic domain of subunit B (B332–B657) are shown. In this representation, the molecules have been superimposed to minimize the rmsd between C α atoms of the catalytic domain (rmsd 0.68 Å calculated over all 335 C α atoms of the catalytic domain). The disulfide bond between Cys267 and Cys610 in PDE4B_{cryst} is labeled.

Table S1.	Disulfide-linked	peptide fragments	of PDE4Bcryst	identified in peptic digest

Cys267-containing peptide*	Cys610-containing peptide*	[M+4H] ⁴⁺ theoretical [†]	[M+4H] ⁴⁺ observed [†]
262 SEMSRCGNQVSE 273	598 MEISPMADKHTA C VEKSQVGF 618	908.654	908.657
262 SEMSRCGNQVSE 273	600 ISPMADKHTACVEKSQVGF 618	843.633	843.634
262 SEMSR C GNQVSE 273	605 DKHTACVEKSQVGF 618	718.822	718.825
264 MSRCGNQVSE 273	598 MEISPMADKHTACVEKSQVG 617	854.636	854.635
264 MSRCGNQVSE 273	600 ISPMADKHTACVEKSQVGF 618	789.615	789.615

*Residue numbering follows sequence of PDE4B1 (UniProt accession Q07343): peptides listed in this Table include mutations S267C, C604A, and S610C. C267 and C610 are highlighted in bold font.

[†]Monoisotopic values are given for both theoretical and observed *m/z*.

Table S2. Thermodynamic parameters for rolipram binding to reduced and nonreduced $\ensuremath{\mathsf{PDE4B}}\xspace_{\ensuremath{\mathsf{ryst}}\xspace}$

PDE4B _{cryst}	Stoichiometry	K _D , nM	∆G, kcal/mol	∆H, kcal/mol	T∆S, kcal/mol
Reduced	0.83	55	-9.80	-16.54	-6.75
Nonreduced	0.90	101	-9.54	-15.60	-6.05

Table S3. List of mutations in PDE4D found in acrodysostosis patients, equivalent residues in PDE4B1 and numbering in Fig. 8				
Number in Fig. 8	PDE4D*	PDE4B		

Number in Fig. 8	PDE4D*	PDE4B
1	Pro225Thr	Pro168
1	Pro225Leu	Pro168
2	Phe226Val	Phe169
2	Phe226Cys	Phe169
2	Phe226Ser	Phe169
3	Ala227Ser	Ala170
4	Gln228Glu	Gln171
5	Ser301Thr	Ser243
6	Met303Val	Met245
7	Ala304Val	Ala246
8	Val329Ala	Val271
9	Thr587Pro	Thr531
10	Glu590Ala	Glu534
11	Gly673Asp	Gly617
12	lle678Thr	lle622

*Data from ref. 1.

PNAS PNAS

1. Lindstrand A, et al. (2014) Different mutations in PDE4D associated with developmental disorders with mirror phenotypes. J Med Genet 51(1):45–54.