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Supplemental Methods 
Modeling expected crossovers 
 To model expected crossovers, an F1 chromosome with 10,000 equally spaced 
sites was constructed by coding one parental gamete as a sequence of 0’s and the other 
as a sequence of 1’s. To simulate a selfing generation, two gametes were generated by 
randomly generating the position of a single crossover from a uniform distribution. 
Because only one chromatid of each chromosome of a pair participates in a crossover, 
there is a .5 probability that a generated gamete will contain a crossover. Two 
independently generated gametes were combined to create a self-progeny. The selfing 
process was repeated to simulate multiple generations of selfing. 100,000 progeny were 
simulated and the resulting number and type of crossovers were counted. Because each 
generated gamete has a 0.5 probability of containing a cross-over, it represents a 
chromosome segment with a genetic map length of 50cM. The resulting crossover rate 
was multiplied by 28 to calculate the rate expected for a 1400 cM map length.  
 
Quality control of imputed genotypes 

After an initial imputation of RIL genotypes, RILs that had more than 30% 
heterozygous loci were excluded from the analysis. A likely reason for apparent excess 
heterozygosity was the presence of non-parental haplotypes resulting from 
contaminated pollinations or sample mixups during the inbreeding process. After 
examining several alternative quality parameters, it was found that excess 
heterozygosity most consistently identified problem genotypes. After filtering RILs on 
genotype quality, 4714 US-NAM RILs and 1382 CN-NAM RILs remained and were re-
imputed. Following that, intervals between adjacent homozygous sites from different 
parents were identified as homozygous crossovers. Intervals between heterozygous 
sites and homozygous sites were identified as heterozygous crossovers. Subsequent 
analysis used only the homozygous cross-overs (See Supplemental Results). Results 
from the GBS pipeline were validated by comparing them to low density co-dominant 
markers that were previously used to genotype the US-NAM population (1). We 
observed that homozygous segments closely matched in the two data sets, but noticed 
that heterozygous segments in the imputed GBS data sometimes had short homozygous 
segments embedded in them, resulting in too many heterozygous crossovers called. 
Rather than work on tuning the Viterbi algorithm to reduce that, we chose to eliminate 
the problem by only working with homozygous crossovers. Sampling variability resulting 
from bulking multiple plants to create DNA samples and contamination of a low 
frequency of samples with non-parental DNA from stray pollen made consistent 
imputation of heterozygous segments challenging. Fortunately, these effects showed up 
as excess heterozygous crossovers and could therefore be largely eliminated.  

 
Estimating hotspot significance 

We assessed the significance of the identified hotspots by determining the 
number of hotspots expected under the observed large-scale (1-Mb) pattern of 
crossovers if there were no recombination hotspots present (i.e. the probability of 
crossover were uniform across a 1-Mb interval). In order to generate the null distribution, 
we divided each chromosome into 1Mb windows, calculated the number of crossovers 
that occurred in each window within US-NAM, and set the probability of a crossover 
occurring within a given window proportional to the empirical count. Then, for each RIL, 
we sampled, with replacement, a number of windows equal to the observed number of 
homozygous crossover for that RIL. The crossover positions were then sampled from a 
uniform distribution within the sampled windows, and the nearest flanking GBS markers 
for the sampled position were used to define the crossover intervals. 
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Whole genome alignment of monocots, GERP score, and phastBias calculation 
 For the whole genome alignment, we used the LASTZ/MULTIZ approach 
adopted by the UCSC genome browser and previously used to align 20 angiosperm 
genomes to the A. thaliana reference (2). Briefly, we aligned the Repeatmasked 
genomes of Sorghum bicolor, Oryza sativa, Setaria italica, Hordeum vulgare, 
Brachypodium distachyon, and Musa acuminata to the Z. mays B73 version 2 genome. 
Each query genome was split into 1Mb segments and aligned to each of the B73 
chromosomes. We then joined these pairwise alignments into larger chains using 
axtChain (3), found the best chained alignment using chainNet, and converted these to 
multiple alignment files. The individual pairwise alignments were then joined into a 
multiple sequence alignment using the roast program in the MULTIZ package(4). 
 Following the alignment, we calculated GERP scores for each site in the Z. mays 
genome using the GERP++ package (5). We used 4-fold degenerate sites in the Z. 
mays genome to create the neutral reference tree, which was calculated with 
approximate maximum likelihood using FastTree2 (6). In order to maintain comparable 
GERP rates across all regions and limit ourselves to the most robust estimates, we 
limited further analyses involving GERP to sites at which all species were able to be 
aligned to the Z. mays reference. We also calculated the posterior probability of biased 
gene conversion at each site using the phastBias program (7), part of the PHAST 
package. 
 
Identification and analysis of hotspot-enriched sequence motifs 
 We randomly split hotspots with at least 10 comparison controls into training 
(n=377) and testing (n=111) sets. Within each set, the hotspots provided the positive 
examples, while a control region was sampled from each hotspot to form the negative 
examples. Motifs significantly enriched within the positive training set relative to the 
negative training set were then identified using Discriminative DNA Motif Discovery 
(DREME), part of the MEME suite (8). Significantly enriched motifs in the training set 
were then tested for enrichment within the testing set using Fisher’s Exact Test. 
 Following identification of enriched motifs, we tested their predictive power with 
respect to recombination in 30kb windows. We created a set of 20,000 of these 30kb 
windows, which did not overlap with each other or any of the regions used for motif 
discovery. Of these 20,000 regions, 15,000 were randomly chosen as a training set with 
5,000 reserved for testing. We then used stochastic gradient boosting with absolute error 
loss to predict recombination frequency using the motifs with p-values <= 0.05 in the 
discovery test set with and without methylation included. Stochastic gradient boosting 
was chosen for its generally high performance as an “out-of-the-box” learner (9). The 
performance of the classifiers was assessed using the root-mean-square error (RMSE), 
while the relative importance of predictor variables was determined by permuting each 
variable 1,000 times and calculating the mean reduction in RMSE. 
 
Supplemental Results 
Comparison to prior genotyping results 

We compared the results of this study to an earlier analysis of the US-NAM 
population using 1106 markers scored with an Illumina GoldenGate (GG) genotyping 
assay (1). Since that time some additional lines were added to the population to replace 
problem lines, and the seed stocks have been increased by sib-pollination. The first 
study reported that about 136,000 crossovers were detected in 4699 RILs. A reanalysis 
of the data showed that these consisted of 101,022 homozygous recombinants and 
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34,666 heterozygous recombinants. The study reported here detected 103,459 
homozygous recombinants and 92,276 heterozyous recombinants in 4714 RILs. The 
rate of homozygous crossovers per RIL was 21.50 and 21.95 for the earlier and current 
studies, respectively. The rate of heterozygous crossovers was 7.37 and 19.7.  

Correctly scoring heterozygous loci was challenging using the GG assay 
because the heterozygotes did not form a distinct cluster for all markers. To deal with 
that problem, ambiguous calls were set to missing. Scoring heterozygous loci with GBS 
is hindered by low read depth, where often only one of the alleles present in a sample 
will be observed. The GBS problem was handled by using an HMM to call genotypes. To 
complicate matters, the DNA samples were created by bulking tissue from 4 plants 
derived from the original S5 plant with one or more generations of self or sib pollination 
between the original plant and the sampled plants. Because of sampling variation, the 
ratio of alleles in a sample at a site that is heterozygous in the S5 plant can vary 
substantially from the expected 1:1 ratio, making heterozygous loci more difficult to 
score correctly by either method. An additional challenge can result from low levels of 
foreign DNA contamination, which may be imputed as heterozygous loci. The difficulty of 
accurately scoring heterozygotes may be partially responsible for the excess of 
heterozygous crossovers in the imputed GBS data, where spurious homozygous calls in 
heterozygous segments may appear as multiple crossovers. Conversely, undercalling of 
heterozygous crossovers in the GG data due to setting heterozygous segments to 
missing can give rise to the same effect. 

In order to compare crossover locations derived from the GBS data to locations 
derived from the GG data, we used physical positions for the GG markers from the 
Panzea database (http://www.panzea.org), which were determined by BLASTing the 
sequences used to design the microarray against version 2 of the B73 reference 
genome.  Approximately 95% of the GG SNPs had direct blast hits. The positions of the 
remainder were either estimated based on the genetic map position or using nearby 
SNPs from the same amplicon. For each RIL, a crossover interval from the GBS data 
was taken to be congruent to a GG-based interval if the intervals overlapped.  

Comparisons of the crossover intervals of GBS and GG show that approximately 
99% of homozygous GG intervals are also identified using GBS, though approximately 
15% of these were classified as heterozygous using the GBS method. 83% of the GG 
heterozygous intervals contained GBS, which were mostly heterozygous. Conversely, 
85% of GBS homozygous crossovers fell within GG crossover intervals and 62% of GBS 
heterozygous crossovers fell within GG crossover intervals.  

The concordance of GBS and GG crossovers clearly demonstrates that 
heterozygous crossovers are not imputed as reliably as homozygous crossovers in 
either the GBS or the GG data. Furthermore, consideration of the HMM-based 
imputation method shows that the position of heterozygous crossovers is often less 
precise. For example, if the parental alleles are coded A and B, and the sequence 
ABABABABAB is observed, then the sequence is interpreted by the Viterbi algorithm as 
heterozygous with the observation of a single random parental allele at each site. As 
such, the sequence ABABABABAAAAAAAA would be inferred to contain a 
heterozygous crossover. However, there is uncertainty governing whether the first A in 
the A-series is homozygous or heterozygous. The second A is more likely to come from 
a homozygous locus but could still be a randomly sampled allele from a heterozygous 
locus.  

Given the lower level of confidence for the heterozygous crossover calls and the 
relative imprecision of their positions, we elected not to include them in further analyses. 
However, we find that their removal is unlikely to bias our results. The densities of 
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homozygous and heterozygous crossovers are nearly identical across the entire genome 
(Supplemental Figure S1). Moreover, the estimation of crossover enrichment on the 
narrow-scale is not significantly altered by the inclusion of heterozygous crossovers in 
the dataset (Pearson correlation = 0.964) (Supplemental Figure S34). Therefore, while 
we believe that the removal of heterozygous crossovers is the appropriate conservative 
approach, our results are robust to their inclusion. 
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Supplemental Tables 

Table S1: Coefficients for terms in linear model of homozygous crossover density in 
1Mb windows without inclusion of GBS density. Note that all explanatory variables have 
been centered and scaled to have a standard deviation of 1. 
 

 Estimate SE SS F-value p-value 

Telomere −0.0976 0.0104 12.191 87.885 < 2×10!!" 

CpG −0.4502 0.0226 55.0 396.727 < 2×10!!" 

CHH 0.1096 0.0182 5.0 36.278 2.023×10!! 

CpG:CHH 0.0872 0.0073 31.64 141.387 < 2×10!!" 

GC 0.0616 0.0100 5.291 38.145 7.90×10!!" 

Repeat −0.2604 0.0180 29.006 209.104 < 2×10!!" 

Cross-Validation R2: 0.8225 
 
 
Table S2: Coefficients for terms in linear model for CpG methylation in hotspots 
 

 Estimate SE SS F-value p-value 

GBS −22.690 0.03933 0.18688 27.739 2.44×10!! 

Crossover enrichment −0.0451 0.00868 0.18205 27.022 3.44×10!! 

GBS:Crossover enrichment 3.272 0.86822 0.09571 14.206 0.000193 

 
Adjusted R2: 0.231 
 
Table S3: Coefficients for terms in linear model for CHG methylation in hotspots 
 

 Estimate SE SS F-value p-value 

GBS −12.869 3.211 0.0611 16.067 7.51×10!! 

Crossover enrichment −0.0204 0.00647 0.03715 9.9262 0.00177 

GBS:Crossover enrichment 1.798 0.64713 0.02888 7.162 0.00577 

 
Adjusted R2: 0.1363 
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Table S4: Enrichment within a testing set of hotspots for motifs found to be 
significantly enriched within a distinct training set of hotspots 
 
Motif Hotspot Frequency Control Frequency p-value 

CGTGACR 76/111 50/111 0.000670 

MCGATCGA 43/111 26/111 0.009992 

CGTACGTR 70/111 52/111 0.010808 

GTGCGTGS 67/111 50/111 0.015628 

CCGGCCSS 97/111 84/111 0.018531 

CACGCACK 62/111 46/111 0.021873 

ACGGSGGC 86/111 72/111 0.026811 

CGCGCGCS 85/111 71/111 0.027919 

ACGMGACG 63/111 48/111 0.029998 

CGCGTBGC 81/111 68/111 0.043057 

CCGGCGCH 87/111 75/111 0.047990 

CGTASTAC 43/111 33/111 0.101433 

GCTAGCTA 67/111 59/111 0.171497 

GCTAGKAC 36/111 29/111 0.188132 

ACGACGGY 72/111 65/111 0.203750 

ACGTACWG 31/111 25/111 0.219944 

GGCASGCA 76/111 70/111 0.239774 

ATSGATCG 34/111 31/111 0.384076 

ACGCTRCG 37/111 35/111 0.443032 

CGCSAGCW 82/111 83/111 0.620590 

CGTGCCKC 41/111 45/111 0.754487 
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Table S5: Coefficients for terms in linear model for GC content in hotspots 
 

 Estimate SE SS F-value p-value 

GBS 3.449 0.2966 0.15417 135.164 < 2×10!!" 

Crossover enrichment 0.0115 0.0017 0.05205 45.633 3.64×10!!! 

 
Adjusted R2: 0.2863 
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Supplemental Figures 

 

Figure S1. Crossover density of homozygous and heterozygous crossovers in the 
current study, along with the total crossover density in a previous GoldenGate assay 
of NAM recombination 
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Figure S2. Sizes of crossover intervals in US and CN NAM populations 

 

 

Figure S3. Neighbor joining tree for US-NAM and CN-NAM founders. Branch colors 
are red: founders developed in the US or CN founders that cluster with US lines; 
purple: tropical founders; blue: CN founders not clustering with US lines; yellow: lines 
developed in South Africa. Tx303 and Mo18W were developed in the US from tropical 
parents and cluster with the tropical founders. 
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Figure S4. Homozygous crossover counts for US-NAM and CN-NAM by chromosome 

 

 

Figure S5. Homozygous crossovers per RIL by family for US-NAM (left) and CN-NAM 
(right). Dashed lines show that most counts fall between 20 and 25. 
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Figure S6. QQ-plot of χ2 statistic testing equal numbers of crossovers in US-NAM vs. 
CN-NAM. The red line gives the threshold defined by the Bonferroni-corrected type I 
error rate,  α=0.05 

 

 

Figure S7. QQ-plot of χ 2 statistic testing number of crossovers across the US-NAM 
families proportional to the number of RILs in each family. The red line gives the 
threshold defined by the Bonferroni-corrected type I error rate, �=0.05 
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Figure S8. Pairwise scatter plots of the variables using in the 1-Mb model of 
crossover density in US-NAM 
 

 

Figure S9. Genome-wide crossover density in US-NAM and its association with CHG 
methylation. Kernel density estimates of crossover density are shown by both height 
and color, drawn relative to the maximum density across all chromsomes, and black 
lines give the relative frequency of methylated CHGs, with scales given on the right 
side. Grey boxes indicate the locations of the centromeres. 
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Figure S10. The predicted number of crossovers in 1Mb windows with varying CpG 
and CHH methylation according to the linear model. Other predictors are set at their 
mean values. Points show the observed values. 
 

 

Figure S11. Genome-wide crossover density in US-NAM and its association with 
CHH methylation 
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Figure S12. Crossover density in 4 US-NAM families on chromosome 1. In B73 x 
CML333 (Z007) there is a large non-centromeric region with no crossovers from 217.9 
to 245.5 MB. 
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Figure S13. The inversion of the B73 chromsome 1 segment 217.9-245.48 Mb 
relative to sorghum chromosome 1. In B73 x CML333 this region contains no 
crossovers. 
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Figure S14. The total number of hotspots found using the smoothing spline-based 
method (red line) in the actual data compared to the number found in 1,000 
simulations from a null distribution with the same Mb-scale pattern of recombination 
but without hotspots. Note that out of the total number of hotspots found, only 410 
were used for further comparison in order to assure that each had at least 500 
comparison controls. 
 

 

Figure S15. Relationship between the mean GBS density in controls and the GBS 
density of the corresponding hotspots.  
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Figure S16. Mean GBS density of the hotspots (red line) compared to the range of 
mean GBS densities (blue histogram) of permuted controls during a permutation test. 
 

 

Figure S17. Estimated crossover enrichment ranges in controls and hotspots. 
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Figure S18. The relationship of estimated crossover enrichment in US-NAM hotspots 
to the crossover enrichment estimated in same CN-NAM regions 
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Figure S19. Mean historical recombination rate within maize landraces in hotspots 
compared to controls. 
 

 

Figure S20. Mean historical recombination rate within teosintes in hotspots compared 
to controls. 
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Figure S21. 95% CI for mean CHG methylation in 100 bins across controls (red 
shaded region) compared to 100 bins in hotspots (red dots). Each hotspot or control 
was divided into 100 even-sized bins, and the amount of methylation was averaged 
over all regions for each bin. 
 

 

Figure S22. 95% CI for mean CHH methylation in 100 bins across controls (red 
shaded region) compared to 100 bins in hotspots (red dots). 
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Figure S23. Mean central CpG methylation of hotspots compared to controls that 
have mean GBS depth greater than or equal to their comparison hotspot. 
 

 

Figure S24. Mean central CHG methylation of hotspots compared to controls that 
have mean GBS depth greater than or equal to their comparison hotspot. 
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Figure S25. Mean central CHH methylation of hotspots compared to controls that 
have mean GBS depth greater than or equal to their comparison hotspot. 
 

 

 

 



 23 

 

Figure S26. Mean methylation of hotspots compared to controls, separated by 
genomic context (gene body, transposable element body, non-TE intergenic region).  
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Figure S27. Results from using machine learning to predict the number of crossovers 
in 30kb intervals using only motifs significantly enriched in hotspots (a and b) and 
using the motifs in addition to the amount of CpG, CHG, and CHH methylation (c and 
d).  
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Figure S28. Mean maximum posterior bGC probability in hotspots compared to 
controls. 
 

 

Figure S29. GERP rates across the genome, grouped by the minor allele frequency. 
In this study we removed SNPs with MAFs below 0.025 in order to guard against the 
effects of genotyping error. 
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Figure S30. The mean GERP rates within annotated codons across the genome. 
Bars give the mean rates at all first and second codon positions or all third codon 
positions (red and orange bars) or the mean rates at those positions with known 
segregating polymorphisms (blue and green bars). 
 

 

Figure S31. Percent difference between the proportion of polymorphisms at sites with 
GERP above a threshold in hotspots ( θ 1) vs. the rest of the genome (θ 2). 
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Figure S32. The proportion of deleterious polymorphisms, as measured at varying 
GERP thresholds, of hotspots compared to controls after limiting control regions to 
those with GC content at least as high as the comparison hotspot. One-tailed 
permutation p-values are shown. 
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Figure S33. Kernel density estimate of the percent difference between the proportion 
of polymorphisms at sites with GERP above a threshold in hotspots (θ1) vs. the rest of 
the genome (θ2) based on permutations of random sites from the genome in which the 
proportion of each reference base was constrained to be the same as the proportions 
within the hotspots. 
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Figure S34. Relationship of estimated crossover enrichment in recombination 
hotspots between datasets where heterozygous crossovers are included and 
excluded. 
 


