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Support Information for “Endocytic proteins drive vesicle growth via instability
in high membrane tension environment”

TABLE S1: Notations

Notation Significance

θα Parameters describing the surface
r(θα) Position vector to an arbitrary point on the surface
aα Tangent vectors at any arbitrary point on the surface
aαβ Components of the metric tensor
aαβ Components of the dual metric tensor
eαβ Components of the permutation tensor
εαβ Components of the permutation tensor density
n Unit normal to the surface at any arbitrary point
bαβ Components of the curvature tensor

b̃αβ Contravariant adjugate of bαβ
Ω Reference configuration
ω Current configuration
Ωa Domain over which actin force is applied in reference configuration
ωa Domain over which actin force is applied in current configuration
W Strain Energy density in the current configuration
p Transmembrane Pressure
V Volume enclosed by the membrane
H Mean Curvature
K Gaussian Curvature

C(θα) Prescribed Spontaneous curvature field
D Deviatoric Curvature

D0(θα) Prescribed deviatoric curvature field
Eb Total free energy of the bilayer
Ef Work done by actin forces
J Determinant of the Jacobian

λ(θα) Surface tension field
λ Direction of alignment of BAR protein
µ Direction perpendicular to λ of BAR in tangent plane
κλ Curvature along direction λ
κµ Curvature along direction µ
κ0λ Prescribed Spontaneous Curvature along direction λ
κ0µ Prescribed Spontaneous Curvature along direction µ
kB Bending modulus of bare lipid bilayer
kG Gaussian modulus of bare lipid bilayer

k̂B(θα) Bending modulus in the clathrin coated domain.

k̂G(θα) Gaussian modulus in the clathrin coated domain (assumed equal to kG).

K̂1(θα) Modulus associated with mean curvature. (k̂B in clathrin coated domain and kB in bare membrane domain).

K̂2(θα) Modulus associated with deviatoric curvature. (0 in clathrin coated and bare membrane domain)

K̂3(θα) Gaussian modulus in BAR coated domain (assumed equal to kG).
λα Contravariant components of λ
µα Contravariant components of µ
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TABLE S1: Notations (continued)

Notation Significance

f Force per unit area in the current configuration

f̃ Force per unit mass (assumed constant from reference to current configuration)
ρ Mass per unit area in the current configuration
u Variation given to the position vector
ut Variation in the tangential direction
un Variation in the normal direction
a Determinant of the metric tensor in the current configuration
A Determinant of the metric tensor in the reference configuration
τ Unit tangent vector to the boundary of the surface
ν Unit normal to the boundary of the surface
M Bending Moment per unit length
Fν In-plane normal force per unit length
Fτ In-plane shear force per unit length
Fn Transverse shear force per unit length

TABLE S2: Parameters used for simulations

Symbol Significance Value Ref.

kB Bending Modulus of the bare lipid bilayer 20 kBT [11, 12]

k̂B Bending modulus of the clathrin coated domain 200 kBT [13]
C Preferred curvature of the clathrin coat 1/50 nm−1 [14]
p Transmembrane (osmotic) Pressure in Yeast 1000 Pa [15]
f Maximum force applied by actin filaments 100− 200 pN [16–18]
f0 Force intensity applied by actin filaments < 2x105 Pa [16–18]
H0 Preferred mean curvature of the BAR coat 0− (1/30) nm−1 [19, 20]
D0 Preferred deviatoric curvature of the BAR coat 0− (1/30) nm−1 [19, 20]

K̂1 Mean curvature bending modulus of the BAR coat 0 - 200 kBT [21]

K̂2 Deviatoric curvature modulus of the BAR coat 0 - 200 kBT [21]

I. MODEL DESCRIPTION

We model a bilayer as a two-dimensional surface ω with a non-uniform distribution of crescent
or banana shaped BAR proteins. The locus of points on ω is tracked by the position vector
r(θµ) where θµ are the surface coordinates. Here and henceforth, Greek indices range over
{1, 2} and, if repeated, are summed over that range. The basis vectors on the tangent plane
at any point are given by aα = r,α where (),α = ∂()/∂θα. This yields the metric aαβ = aα ·aβ,
and the unit surface normal vector n = a1 × a2/ |a1 × a2|. The local curvature tensor field
is given by b = bαβa

α ⊗ aβ where

bαβ = n · r,αβ = −aα · n,β (1)

are the coefficients of the second fundamental form, aα = aαβaβ are the contravariant basis
vectors, and (aαβ) = (aαβ)−1 is the dual metric [1]. Symmetry restrictions require the strain
energy W for an isotropic fluid membrane [2, 3] to depend only on the mean and the Gaussian
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curvatures (H,K) where,

H =
1

2
aαβbαβ = (κλ + κµ)/2,

K =
1

2
εαβεθψbαθbβψ = κλκµ − τ 2.

(2)

Here {κλ, κµ} are the principal curvatures, τ is the twist, and εαβ = a−
1
2 eαβ is the permuta-

tion tensor density where eαβ is the permutation tensor. The total free energy of a bilayer
that accounts for the areal and volume constraints is given by

Eb =

∫
ω

(W (H,K; θα) + λ(θα))da− pV (ω), (3)

where λ is the surface tension field which is the Lagrange multiplier associated with the local
area constraint, p is the transmembrane pressure which is the Lagrange multiplier associated
with the volume constraint and V is the enclosed volume.

Clathrin coat: Clathrin coat imparts isotropic spontaneous curvature C(θα) and en-
hanced flexural stiffness to a bilayer. This results in a modified strain energy W =
k̂B(θα)(H−C(θα))2 + k̂G(θα)K in the coated domain. In our model, coat-induced properties

(C, k̂B, k̂G) can spatially vary, and hence depend on surface coordinates. The specific values
of the parameters used in this study are presented in Table S2. Further, we have assumed
k̂G to be the same as kG.

BAR coat: BAR dimers form a cylindrical coat in contrast to a spherical coat formed by
clathrin proteins. As a consequence they generate anisotropic spontaneous curvatures. This
breaks the isotropic symmetry present in the above theory and requires the strain energy to
depend on a new invariant

D =
1

2
bαβ(λαλβ − µαµβ) = (κλ − κµ)/2 (4)

called the curvature deviator [4–7] . Here λ corresponds to the direction of attachment of the
BAR dimer and µ is the direction orthogonal to λ in the tangent plane of the surface such
that {λ,µ,n} form a local triad (Fig S1). λα and µα represent the contravariant components
of λ and µ, respectively (for example, λα = λ · aα). {κλ, κµ} represent the curvatures along
directions λ and µ respectively. We would like to emphasize that the scalar λ is the surface
tension field and the vector λ is the direction of attachment of the BAR proteins.

The energy functional in the BAR coated domain takes the form

Eb =

∫
ω

(W (H,D,K; θα) + λ(θα))da− pV (ω). (5)

For our study, we allow the modified strain energy to have a quadratic dependence on
H and D, in alignment with the Helfrich energy, and set W = K̂1(θ

α)(H − C(θα))2 +

K̂2(θ
α)(D−D0(θ

α))2 + K̂3K. The specific values of these parameters are presented in Table

S2. Similar to clathrin coat, we have assumed the Gaussian modulus K̂3 to be the same as kG.
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Force from actin filaments: Let f be the force per unit area (force intensity) applied by
actin filaments on a point on the surface with a position vector r in the current configuration
and r0 in the reference configuration. The total work done by the applied force over the
subdomain on which actin force acts is given by

Ef =

∫
ωa

f(θα) · (r− r0) da. (6)

This results in an augmented free energy

E = Eb − Ef . (7)

Seamless heterogeneity: The effective membrane properties under the influence of
clathrin and BAR proteins and the forces due to actin filaments are specified via a hyperbolic
tangent function (tanh) as shown in Fig. S2. This ensures continuity and differentiability of
the strain energy density, W, at the interfaces of the protein coated membrane or the actin
forcing domain.

A. Variations

We consider a family of surfaces generated by r(θα; ε). The virtual displacement of the
surface is given by u(θα) = ∂

∂ε
r(θα; ε)|ε=0 = ṙ, where the superposed dot refers to the deriva-

tive with respect to the parameter ε [8]. The variation of the total free energy of the
membrane-protein system can be written as

Ė = Ėb − Ėf (8)

where

Ėb =

∫
ω

Ẇda+

∫
ω

(W + λ)(J̇/J) da− pV̇ , (9)

Ėf =

∫
ω

f · u da, (10)

and J =
√
a/A is the ratio of the material area after and before the deformation. We follow

the procedure outlined in [7–9] to derive the corresponding variational derivatives and the
Euler-Lagrange equations. We skip the details and summarize the key intermediate steps
and expressions.

Eqs. (2) and Eq. (4) yield the variational derivatives of the three invariants

2Ḣ = −bαβȧαβ + aαβ ḃαβ,

2K̇ = eαβeλµ
[
ḃαλbβµ
a
− bαλbβµ

a

ȧ

a

]
,

(11)
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and

Ḋ =
1

2
(κ̇λ − κ̇µ)

=
1

2

[
(ḃαβλ

αλβ + 2bαβλ̇
αλβ)− (ḃαβµ

αµβ + 2bαβµ̇
αµβ)

]
.

(12)

Using the definitions discussed earlier, we can compute the following variational derivatives
of the key geometric quantities

ȧαβ = aα · u,β + aβ · u,α, (13)

ḃαβ = n · u;αβ, (14)

ȧ

a
= aαβȧαβ, (15)

J̇

J
= 1

2
aαβȧαβ, (16)

λ̇α = aαγ(λ · ȧγ) + (λ · aγ)ȧαγ, (17)

and

µ̇α = aαγ(µ · ȧγ) + (µ · aγ)ȧαγ. (18)

Since variation u can be decomposed into a tangential component ut = uηaη, and a normal
component un = un, we derive the equilibrium equations for the two components indepen-
dently.

1. Tangential Variations

For tangential variations, u = uλaλ, which yields

u,α = uβ;αaβ + (uλbλα)n (19)

where ();α signifies the covariant derivative. If we substitute it into Eqs. (11)-(18) and carry
out simplifications outlined in [7–9], we obtain

ȧαβ = uα;β + uβ;α. (20)

ḃαβ = uλ;βbλα + uλ;αbβλ + uλbλα;β (21)
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J̇

J
= uα;α. (22)

λ̇α = −λψuα;ψ, and µ̇α = −µψuα;ψ. (23)

Ḣ = uαH,α (24)

K̇ = uαK,α (25)

Ḋ =
1

2
ḃαβ(λαλβ − µαµβ) + bαβ[aαγȧγ · (λβλ− µβµ)

+ ȧαγaγ · (λβλ− µβµ)].
(26)

Furthermore,

Ẇ = WHḢ +WDḊ +WKK̇, and

W,η = WHH,η +WDD,η +WKK,η + ∂W/∂θη.
(27)

Using the above obtained relations, we deduce the in-plane equilibrium equation (for Ė = 0)

λ,η = −∂W/∂θη −WD(bαβ(λαλβ);η)− f · aη. (28)

This equation regulates the spatial variation of the surface tension field. It is operative
when the membrane has heterogeneous properties and is trivially satisfied for homogeneous
membranes. In the clathrin coated and bare lipid membrane domains, dependence of W on
D is suppressed.

2. Normal Variations

For normal variations, u = u(θα)n. This yields

u,α = u,αn− ubβαaβ. (29)

Again, substituting Eq. (29) into Eqs. (11)-(18) and carrying out simplifications outlined in
[7–9] furnish

ȧαβ = −2ubαβ, (30)

ḃαβ = u;αβ − ubαλbλβ, (31)

J̇/J = −2Hu, (32)

λ̇α = ubγψa
αψλγ, µ̇α = ubγψa

αψµγ, (33)
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2Ḣ = ∆u+ u(4H2 − 2K), (34)

K̇ = 2KHu+ b̃αβu;αβ, (35)

Ḋ = (u;αβ + ubαγb
γ
β)(λαλβ − µαµβ)/2, (36)

where ∆ = ();αβa
αβ denotes the surface Laplacian.

Also,

V̇ =

∫
ω

u · n da =

∫
ω

u da (37)

Using the above obtained variations, we obtain the song Euler-Lagrange question, called the
shape equation that governs the geometry of the membrane

1

2
[WD(λαλβ − µαµβ)];βα +

1

2
WD(λαλβ − µαµβ)bαγb

γ
β + ∆(

1

2
WH) + (WK);βαb̃

βα

+WH(2H2 −K) + 2H(KWK −W )− 2Hλ = p+ f · n.
(38)

As for the equilibrium equation in the tangent plane, we suppress the dependence of W on
D in the clathrin coated and bare lipid membrane domains.

3. Boundary Forces and Moment

In the presence of boundaries, the tangential and normal variations yield additional terms
that define the stresses and moments at the boundary [7, 10]. For any arbitrary boundary
∂ω on the surface, a unit tangent vector τ (shown in Fig. S3) can be obtained by taking
the derivative of the position vector with respect to the arc length that parameterizes the
boundary. Thus,

τ =
dr(θα(s))

ds
(39)

and the unit normal to the boundary, in the tangent plane of the surface, can then be defined
by the vector ν = τ × n.

Following the procedure outlined in [7, 10], we arrive at the following boundary terms

ĖB =

∫
∂ω

(Fνν +Fττ +Fnn) · uds−
∫
∂ω

Mτ · ωds

+
∑
i

fi · ui
(40)
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where

M =
1

2
WH + κτWK +WDλ

αλβνβνα −
1

2
WD,

Fν = W + λ− κνM,

Fτ = −τM,

Fn = (τWK)′ − 1

2
(WH),ν − (WK),β b̃

αβνα,

+
1

2
(WD),ν − (WDλ

αλβ);βνα − (WDλ
αλβνβτα)′,

fi = (WK [τ ] +WD[λαλβνβτα])in.

(41)

Square brackets indicate forward jumps in values within the brackets at the corners of a

boundary when there is a jump in τ and ()′ = d()
ds

. Above, M is the bending moment per
unit length, Fν is the in-plane normal force per unit length, Fτ is the in-plane shear force
per unit length, Fn is the transverse shear force per unit length and fi is the force applied
at i th corner of ∂ω.

B. Axisymmetric Deformations

We assume that the membrane invaginations possess axisymmetry. We simplify the equi-
librium equations (28) and (38) for axisymmetric surfaces parameterized by meridional arc
length s and azimuthal angle θ. Since the Gaussian modulus is assumed to be uniform in all
the domains (bare membrane, clathrin coat and BAR coat) and the membrane is planar at
the boundary of the simulated domain, we can use the Gauss-Bonnet theorem to suppress
the dependence of the strain energy density (W) on the Gaussian curvature (K). For such a
surface,

r(s, θ) = r(s)er(θ) + z(s)k (42)

where r(s) is the radius from axis of revolution, z(s) is the elevation from a base plane and
(er, eθ,k) form the coordinate basis. Since (r′)2 + (z′)2 = 1, we can define an angle ψ such
that

r′(s) = cosψ and z′(s) = sinψ. (43)

As mentioned above, ()′ = ∂()/∂s. With θ1 = s and θ2 = θ, we can easily show that

a1 = r′er + z′k, a2 = reθ, and

n = − sin(ψ)er + cos(ψ)k.
(44)

Using Eq. (44) and its derivatives, we can show that the metric (aαβ) = diag(1, r2), the dual
metric (aαβ) = diag(1, 1

r2
), and the covariant components of the curvature tensor (bαβ) =
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diag(ψ′, r sinψ). Together they furnish the two invariants

2H =
sinψ

r
+ ψ′, and

K = H2 − (H − (sinψ)/r)2.
(45)

For BAR coated domain, we consider a continuous distribution of proteins on the surface
with crescent shaped dimers aligned in the circumferential direction. Thus,

λ = −eθ, µ = cosψer + sinψk, (46)

and the normal curvatures in the above two directions are κλ = (sinψ)/r and κµ = ψ′,
respectively. The curvature deviator is thus given by D = [(sinψ)/r−ψ′]/2. For this choice
of λ and µ, the shape equation (38) for an axisymmetric geometry reduces to

p+ f · n =
L′

r
+WH(2H2 −K)− 2H(W + λ−WDD) +

((WD)′ cosψ)

r
(47)

where

L/r =
1

2
[(WH)′ − (WD)′]. (48)

The equilibrium equation in the tangent plane (28) takes the form

λ′ = −W ′ − f · a1. (49)

The above equations remain valid for the uncoated and the clathrin coated membranes by
suppressing dependence of strain energy density on the deviatoric curvature D. In order to
maintain a control over the domains over which clathrin, actin and BAR proteins interact
with the membrane, we transform the independent variable from arclength s to area a with
the help of the relation da/ds = 2πr.

For an axisymmetric case, we can express the strain energy density of the BAR coated
domain in terms of curvatures along principal directions {κλ, κµ}

W = k̂1(κλ − κ0λ)2 + k̂2(κµ − κ0µ)2 + 2k̂12(κλ − κ0λ)(κµ − κ0µ). (50)

The bending moduli in the {H,D} and the {κλ, κµ} framework are related by the following

expressions k̂1 = k̂2 = (K̂1 + K̂2) and k̂12 = (K̂1 − K̂2).

In addition, we non-dimensionalize the system of equations and define

r̄ = r/R0, z̄ = z/R0, ā = a/2πR0
2, κ̄λ = R0κλ, W̄ = WR0

2/k0,

κ̄µ = R0κµ, H̄ = R0H, D̄ = R0D, K̄ = R0
2K, λ̄ = λR0

2/k0,

L̄ = R0L/k0, k̄1 = k̂1/k0, k̄2 = k̂2/k0, p̄ = pR0
3/k0, f̄ = (R0

3/k0)f.

(51)

where R0 = 25nm is the normalizing radius of curvature and k0 = 20kBT is the normalizing
bending modulus.
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In terms of these normalized parameters and the partial derivative with respect to a, (̊) =
∂()/∂ā, the system of equations can be written as

˚̄r = cosψ/r̄, ˚̄z = sinψ/r̄, (52)

ψ̊ = κ̄λ/r̄, (53)

L̄/r̄2 =
1

2
( ˚̄WH − ˚̄WD), (54)

˚̄L = p̄+ f̄ · n− W̄H(2H̄2 − K̄) + 2H̄(W̄ + λ̄− W̄DD̄)− ˚̄WD cosψ, and (55)

˚̄λ = − ˚̄W − f̄ · a1. (56)

In terms of the normalized principal curvatures, Eqs. (54)-(56) can be expressed as

˚̄L =

(
p̄+ f̄ · n + (κ̄λ + κ̄µ)(W + λ̄)− 2κ̄2λ[k̄1(κ̄λ − κ̄0λ) + k̄12(κ̄µ − κ̄0µ)]− 2κ̄2µ[k̄12(κ̄λ − κ̄0λ)

+k̄2(κ̄µ − κ̄0µ)]

)
− W̊D cosψ,

(57)

˚̄κλ =
(cosψ)κ̄µ

r̄2
− (sinψ cosψ)

r̄3
, (58)

˚̄λ = −
(

˚̄k1(κ̄λ − κ̄0λ)2 − 2k̄1(κ̄λ − κ̄0λ)̊κ̄0λ +˚̄k2(κ̄µ − κ̄0µ)2 − 2k̄2(κ̄µ − κ̄0µ)̊κ̄0µ

+ 2̊k̄12(κ̄λ − κ̄0λ)(κ̄µ − κ̄0µ)− 2k̄12(κ̄µ − κ̄0µ)̊κ̄0λ − 2k̄12(κ̄λ − κ̄0λ)̊κ̄0µ
)
.

(59)

Above,

W̊D = (2̊k̄1−2̊k̄12)(κ̄λ−κ̄0λ)+(2k̄1−2k̄12)(̊κ̄λ−˚̄κ0λ)+(2̊k̄12−2̊k̄2)(κ̄µ−κ̄0µ)+(2k̄12−2k̄2)(̊κ̄µ−˚̄κ0µ),
(60)

and

˚̄κµ =
L̄

2k̄2r̄2
+ ˚̄κ0µ −

˚̄k2
k2

(κ̄µ − κ̄0µ)− k̄12
k2

(̊κ̄λ − ˚̄κ0λ)−
˚̄k12
k2

(κ̄λ − κ̄0λ). (61)
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The expressions for the boundary forces and moments reduce to:

Fτ = −τM = 0,

M̄ = 2k̄2(κ̄µ − κ̄0µ) + 2k̄12(κ̄λ − κ̄0λ),
Fν = W + λ− κ̄µ(2k̄2(κ̄µ − κ0µ) + 2k̄12(κ̄λ − κ̄0λ)),
F̄ν = k̄1(κ̄λ − κ̄0λ)2 + k̄2(κ̄µ − κ̄0µ)2 + 2k̄12(κ̄λ − κ̄0λ)(κ̄µ − κ̄0µ) + λ̄− κ̄µ(2k̄2(κ̄µ − κ̄0µ)

+ 2k̄12(κ̄λ − κ̄0λ)),
F̄n = −L̄/r̄.

(62)

Boundary Conditions:

The system of equations to be solved comprises of six simultaneous ODE’s (52), (53), (57),
(58), and (59). We prescribe the following six boundary conditions at the two ends of the
simulation domain as shown in Fig. S4.

i) For the near end at ā = 0

r̄ = 0, ψ = 0 and L̄ = 0 (due to reflection symmetry about z axis) (63)

ii) For the far end at ā = ā0

z̄ = 0, ψ = 0 and λ̄ = λ̄0 (prescribed far end tension) (64)

The ODE’s along with the boundary conditions are solved in Matlab using ‘bvp4c solver’.
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FIG. S1: A BAR protein attached to the surface of a bilayer. λ corresponds to the direction of attachment
of the BAR dimer, µ is the direction orthogonal to λ in the tangent plane of the surface and n is the
surface normal. Republished figure from ref. [7], Copyright 2014 by the American Physical Society;

dx.doi.org/10.1103/PhysRevE.89.062715.
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FIG. S2: Function used to prescribe curvature and force fields generated by clathrin, actin and BAR
proteins. F(ā)= tanh [10(ā− ā1)] - tanh [10*(ā− ā2)] with ā1 = 2, ā2 = 5. Here, ā = ā1 to ā = ā2

represents the area over which the the fields are prescribed.

FIG. S3: The three orthonormal vectors on a smooth boundary ∂ω.
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FIG. S4: Simulation domain where the boundary conditions are prescribed at the end points (ā = 0,
ā = ā0). Here n is the vector normal to the surface. Parametrization of the surface is done in terms of area

(ā) rather than arc length to control the area over which clathrin and BAR proteins attach to the
membrane and actin filaments apply force on the membrane. The direction of increasing area is

represented with a purple arrow while the direction of increasing azimuthal angle (θ) is represented with a
green curved arrow.
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FIG. S5: Angle between the membranes is the minimum angle (α) between membranes in the tubular
domain. For a flat configuration this angle is 1800 where as for the neck it is 0. The tip curvature signifies
the radius of curvature at the tip of the vesicle in the plane of the paper. These definitions are obtained

from [22].
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FIG. S6: Variation of angle between the membranes (see Fig. S5) with invagination in the Rvs 167 mutant
case. As the vesicle becomes more cylindrical or tubular, the angle between the membranes decreases and

eventually, goes to zero. Computed data points in solid blue squares match well with the experimental data
in solid black circles. Republished with permission from Elsevier;

www.sciencedirect.com/science/journal/00928674.
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FIG. S7: Variation of angle between the membranes (see Fig. S5) with invagination in the wild type case.
As the vesicle becomes more cylindrical or tubular, the angle between the membranes decreases and

eventually, goes to zero. Computed data points in solid blue squares match well with the experimental data
in solid black circles. Republished with permission from Elsevier;

www.sciencedirect.com/science/journal/00928674.
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FIG. S8: Variation of radius of curvature at the vesicle tip (see Fig. S5) with invagination. The radius of
curvature asymptotically decreases to 10 nm with increasing invagination. Computed data points in solid
blue squares match well with the experimental data in black circles. Republished with permission from

Elsevier; www.sciencedirect.com/science/journal/00928674.
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FIG. S9: Scission stage for BAR-driven invagination. (a) Vesicle shape, and (b) Membrane stresses. Total
in-plane stress Fν crosses the rupture stress of 7.5 mN/m.

Invagination (nm)
0 50 100 150 200

Fo
rc

e 
(p

N
)

0

50

100

150

200

FIG. S10: Actin driven force-deflection response in the absence of clathrin coat. The curve exhibits a
snap-through instability as observed in the presence of clathrin. Resting tension in the membrane is 0.5

mN/m.
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FIG. S11: Force-deflection response in the absence of clathrin coat and counter forces in the planar
membrane adjacent to the vesicle site. Unlike the force-deflection curve in Fig. S10, the curve exhibits a

horizontal third branch. Resting tension in the membrane is 0.5 mN/m.
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FIG. S12: Actin-driven vesicle growth for actin loading II. (a)-(c) Vesicle shapes at different stages. (d)
Stress profile for the shape after snap-through instability shown in (c). The behavior is almost similar to

loading I.
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FIG. S13: Actin-driven vesicle growth for actin loading III. (a)-(c) Vesicle shapes at different stages. (d)
Stress profile for the shape after snap-through instability shown in (c). In contrast to the other two

loadings, the peak stress in the tubular domain in (c) reaches only 0.25 mN/m.


