- 1 Title: Ribonuclease J is required for chloroplast and embryo development in Arabidopsis
- **Running Title:** *AtRNJ* is required for embryogenesis
- 3 Authors: Hongyu Chen, Wenxuan Zou, Jie Zhao^{*}
- 5 Address: State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University,
- 6 Wuhan 430072, China
- ***Corresponding author:** Jie Zhao
- **E-mail**: jzhao@whu.edu.cn
- **Tel**: 86-27-68756010

12 Supplemental Materials

Table S1. Primers (5' to 3') used in this study.

1.1 Primers for mutant verification 14		
	FP	RP 15
rnj-1	aaaggaaagctggcaacaaaact	gcggccaagggaagagtaatc ¹⁶
rnj-2	cctatactttcaccttccgcc	tgtattagggtccaatgctgg ¹⁷
rnj-3	tttgaatgcgtgactactccc	agattgatgaagcaccattgg
CSLB	cccatttggacgtgaatgtagacac	19
1.2 Primers for complementation 20		
	FP	RP 21
RNJ-gDNA	cgcGGTACCctgggaccaagt gataccggaa	cgcGAGCTCcttgggatttgg attctgcgtt 23
1.3 Primers for GUS/GFP fusion constructs 24		
	FP	RP 25
RNJ-Pro-GUS	gcgGTCGACctgggaccaag tgataccggaa	gcgAGATCTatcatcactgtat aacaaaaccca 26
RNJ-Pro-GFP	gcgCTGCAGctgggaccaag tgataccggaa	gcgTCTAGAatcatcactgfað aacaaaaccca 28
1.4 Primers for qRT-PCR		
	FP	RP 30
GAPDH	gagtctactggtgtcttcactg	caaggtcggacttgtattcgtg
AtRNJ-qRT	ttggtggagaggtgtttcgtg	acctcttccaattctccacg

SFig. 1 RNase J is a metallo-beta-lactamase and conserved in plants. (A) Phylogenetic tree analysis
of RNJ with TRZ, CPSF73-I and CPSF73-II from *Arabidopsis* and other organisms. The tree was
constructed by the Neighbor–Joining method with MEGA program 4.0. Branch numbers represent
the percentage of bootstrap values in 1000 sampling replicates. Abbreviations: At, *Arabidopsis thaliana*; Hs, *Homo sapiens*; Os, *Oryza sativa*; Gm, *Glycine max*; Sb, *Sorghum bicolor*; Sc, *Saccharomyces cerevisiae*; Vv, *Vitis vinifera*; Zm, *Zea mays*. (B) Protein comparison of AtTRZs,
AtCPSF73-I, AtCPSF73-II and AtRNJ showing the conserved motifs.

40

41 SFig. 2 The functional domains of RNJ with respect to the T-DNA insertions. The conserved 42 domains of RNJ as a metallo-beta-lactamase (I-IV; A-C) are indicated along with the diagnostic 43 amino acid residues. The Arabic number represents the specific amino acid position in the protein. 44

SFig. 3 The embryo characteristics in wild-type, *rnj-1/+*, and *rnj-3/+* plants. (A-E) Embryos from 45 the globular stage to the bent cotyledon stage in wild-type ovules. (A) embryo in globular stage; (B) 46 embryo in transition stage; (C) embryo in heart stage; (D) embryo in torpedo stage; (E) embryo in 47 bent cotyledon stage. (F-J) The irregular globular *rnj-1* embryos from different development stages 48 as similar as wild-type embryos showed in (A-E). (K-O) The *rnj-1* embryos with abnormal 49 cotyledons from different development stages as similar as wild-type embryos showed in (A-E). 50 (P-T) The irregular globular *rnj-3* embryos from different development stages as similar as 51 wild-type embryos showed in (A-E). (U-Y) The rnj-3 embryos with abnormal cotyledons from 52 53 different development stages as similar as wild-type embryos showed in (A-E). Scale bars = $20 \mu m$.

54

SFig. 4 The down-regulation of *RNJ* expression level after 24h dark treatment. (A) Real-time quantitative PCR analysis of *RNJ* expression in 7DAG seedlings. CK, control check; Dark, 24h dark condition; DAG, day after germination. (B-C) GUS staining signals in 7DAG seedlings from pRNJ::GUS transgenic plants. (B) 7DAG seedling in normal light cycles; (C) 7DAG seedling with 6 days normal light cycles and 24h dark condition.

- 60
- 61
- 62
- 63

503 528

264 281 299

138 175-180

