Tuning Reactivity and Site-Selectivity of Simple Arenes in C-H Activation: Ortho-Arylation of Anisoles *Via* Arene-Metal π -Complexation

Paolo Ricci, Katrina Kramer, Igor Larrosa*

CONTENTS

General experimental details	S2
Experimental procedures	S 3
General procedure A	S 3
General procedure B	S 3
General procedure C	S 3
Procedure for determination of the KIE by one-pot competition experiments.	S 4
Procedure for one-pot competition experiments	S7
Characterisation of chromium complexes and cross-coupling products	S 8
Synthesis, direct any lation and derivatization of (estradiol) $Cr(CO)_3$ complex 1u	S28
References	S 34
¹ H and ¹³ C NMR spectra	S35

General experimental details

Unless otherwise indicated, all reactions were carried out under air. THF was obtained by Grubbs type solvent purification system and stored over molecular sieves under Ar atmosphere. Di-*n*-butyl ether (99+% Extra Dry, Acroseal ®) was purchased from Acros and used without any further purification. Toluene (analytical grade) was purchased from Fisher and used without any further purification. All other starting materials and solvents were purchased from Acros, Aldrich, Alfa Aesar, Fluorochem and used without further purification. $Cr(CO)_6$ was purchased from Acros and utilized under exclusion of light. Catalysts Pd(PPh_3)₄, Pd(OAc)₂ and Pd(dba)₂ were purchased from Strem Chemicals and kept under Ar atmosphere. Starting O-substituted arenes have been synthesized by treatment of the corresponding phenol in presence of iodomethane,¹ 2-iodopropane² or chloromethyl ether³ under previously reported conditions. Chromium complexes are photosensitive and were handled under exclusion of light as far as possible. Solid compounds were stored in an evacuated dessicator over solid dessicant under exclusion of light.

Thin layer chromatography (TLC) was performed on Merck F254 precoated silica gel plates. Visualisation was accomplished with UV light and/or KMnO₄ solution. Flash chromatography (FC) was performed using VWR Prolabo (45-60 μ m) silica gel. Solvents for extraction and FC were analytical grade. Reported solvent mixtures for TLC and FC are volume/volume mixtures. Infrared spectra were obtained on a Bruker Tensor 37 FTIR spectrometer. Peaks are reported in cm⁻¹. High resolution mass spectra were performed at the EPSRC National Mass Spectrometry Service Centre, Swansea. ¹H and ¹³C NMR were recorded on Bruker AV 400 MHz NMR spectrometers in the indicated deuterated solvent, which were obtained from Cambridge Isotope Labs (CDCl₃) or Fluorochem ((CD₃)₂CO). ¹H and ¹³C NMR where referenced to the solvent peak at 7.26 or 2.05 ppm for ¹H in CDCl₃ and (CD₃)₂CO, respectively, and 77.16 or 30.6 ppm for ¹³C. Melting points were obtained using an Electrothermal and Stanley Scientific melting point apparatus and are uncorrected.

Experimental procedures

General procedure A: preparation of arene chromium tricarbonyl complexes (1)⁴

A flame-dried round bottom flask equipped with a magnetic stirrer and a reflux condenser was charged with $Cr(CO)_6$ (6.50 mmol, 1.3 equiv), evacuated and backfilled with Ar. The required O-substituted phenol (5.00 mmol, 1.0 equiv) was added to the flask, followed by the addition of anh. nBu_2O and THF (9:1 v/v, 0.15 M). The resulting suspension was subjected freeze-pump-thaw cycles (3 × 30 min) and then refluxed (external temperature 150 °C) for 48 h. The solution was then cooled down to room temperature and filtered through a short pad of silica. The silica pad was washed with Et_2O (3 × 20 mL) and the organic layer was then concentrated *in vacuo*. Recrystallisation from a cold mixture of hexane/Et₂O 9:1 provided the arene tricarbonyl chromium complex **1**.

General procedure B: Direct arylation of arene tricarbonyl chromium complexes 1 with iodoarenes 2 (excess of chromium tricarbonyl complex).

To an oven-dried microwave 10 mL glass vial equipped with a round stirrer bar, the following reagents were added in this order: K_2CO_3 (172.5 mg, 1.25 mmol, 2.5 equiv), 1-AdCO₂H (45.0 mg, 0.25 mmol, 0.5 equiv), Ag₂CO₃ (70 mg, 0.25 mmol, 0.5 equiv), Pd(PPh₃)₄ (5 mol %, 28.9 mg, 0.01 mmol), the required arene Cr(CO)₃ complex **1** (0.65 mmol, 1.3 equiv) and iodoarene **2** (0.50 mmol, 1.0 equiv). PhCH₃ (0.3 mL, 1.7 M) and 2,2,6,6-tetramethylpiperidine (170 µL, 1.00 mmol, 2.0 equiv) were added and the glass vial was sealed with a disposable microwave cap. The resulting mixture was stirred for 48 h at 60 °C. The reaction was then cooled down and AcOH (2 mL) was slowly added with moderate stirring. After 5 min, MnO₂ (130 mg, 1.50 mmol, 3 equiv) was added in small portions and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 cm × 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo*.

General procedure C: Direct arylation of arene tricarbonyl chromium complexes 1 with iodoarenes 2 (excess of iodoarene).

To an oven-dried microwave 10 mL glass vial equipped with a round stirrer bar, the following reagents were added in this order: K_2CO_3 (172.5 mg, 1.25 mmol, 2.5 equiv), 1-AdCO₂H (45.0 mg, 0.250 mmol, 0.5 equiv), Ag₂CO₃ (105 mg, 0.375 mmol, 0.75 equiv), Pd(PPh₃)₄ (5 mol%, 28.9 mg, 0.010 mmol), the required arene Cr(CO)₃ complex **1** (0.5 mmol, 1.0 equiv) and iodoarene **2** (0.75 mmol, 1.5 equiv). PhCH₃ (0.3 mL, 1.7 M) and 2,2,6,6-tetramethylpiperidine (170 µL, 1 mmol, 2.0 equiv) were added and the glass vial was sealed with a disposable microwave cap. The resulting mixture was stirred for 30 h at 60 °C. The reaction was then cooled down and AcOH (2 mL) was slowly added with moderate stirring. After 5 min, MnO₂ (130 mg, 1.5 mmol, 3 equiv) was added in

small portions and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 cm \times 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo*. Purification via flash chromatography column on silica gel provided the required biaryl product.

Procedure for determination of the KIE by one-pot competition experiments.

Control experiment: Assessment of the reactivity of 6-methoxy-1,2,3,4-tetrahydronaphthalene complex **1p** versus 6-ethoxy-1,2,3,4-tetrahydronaphthalene complex **1q**.

6-Methoxy-1,2,3,4-tetrahydronaphthalene $Cr(CO)_3$ complex (**1p**, 0.300 mmol, 89.4 mg, 3.00 equiv), 6-ethoxy-1,2,3,4-tetrahydronaphthalene $Cr(CO)_3$ (**1q**, 0.300 mmol, 93.6 mg, 3.00 equiv) and *p*-iodotoluene (**2a**, 0.100 mmol, 21.8 mg, 1.00 equiv) were subjected to direct arylation conditions for 4.5 h at 60 °C according to general procedure B. Demetallation was performed using MnO₂ (1.80 mmol, 156.5 mg, 18.0 equiv) and AcOH (5 mL) for 30 min, after which the solution was filtered through a plug of silica, which was subsequently washed three times with Et₂O.

After removal of the solvents *in vacuo*, yields were determined by ¹H NMR analysis of the crude mixture using an internal standard (1,3-dinitrobenzene, 0.100 mmol, see spectrum below). Two runs were performed. The reactivity of 6-methoxy-1,2,3,4-tetrahydronaphthalene $Cr(CO)_3$ complex **1p** and 6-ethoxy-1,2,3,4-tetrahydronaphthalene $Cr(CO)_3$ complex **1q** was determined equivalent.

	Conv. 1p / mmol	Average 1p /mmol	Conv. 1q / mmol	Average 1q n /mmol
1 st run	0.0287	0.0274	0.0270	0.0262
2 nd run	0.0262	0.0274	0.0262	0.0263

Determination of the KIE.

6-Methoxy-1,2,3,4-tetrahydronaphthalene-5,7- d_2 Cr(CO)₃ complex (**1p-D**, 0.300 mmol, 90.8 mg, 3.00 equiv), 6-ethoxy-1,2,3,4-tetrahydronaphthalene Cr(CO)₃ complex(**1q**, 0.300 mmol, 93.6 mg, 3.00 equiv) and 4-iodotoluene (**2a**, 0.100 mmol, 21.8 mg, 1.00 equiv) were subjected to direct arylation conditions for 4 h at 60 °C according to general procedure B. Demetallation was performed using MnO₂ (1.80 mmol, 156.5 mg, 18.0 equiv) and AcOH (5 mL) for 30 min, after which the solution was filtered through a plug of silica, which was subsequently washed three times with Et₂O.

After removal of the solvents *in vacuo*, yields were determined by ¹H NMR analysis of the crude mixture using an internal standard (1,3-dinitrobenzene, 0.100 mmol). Two runs were performed. Integration in the ¹H NMR was performed between protons **A** (**3p-Da**) and **A'** (**3aq**) and between protons **C** (**3p-Da**) and **C'** (**3aq**) (see spectrum below).

	Conv. 1p-D / mmol	Conv. 1q / mmol	Conv. 1p-D/ Conv. 1q
1 st run	0.0122	0.0239	1.96
2 nd run	0.0095	0.1997	2.10

$$\text{KIE} = \frac{k_{\text{H}}}{k_{\text{D}}} = \frac{conversion_{1\mathbf{q}}}{conversion_{1\mathbf{p}-\mathbf{D}}} = 2.0$$

Procedure for one-pot competition experiments between 1b and fluorinated arenes

A modification of general procedure B was applied using **1b** (24.4 mg, 0.100 mmol, 1.00 equiv), 1,3,5-trifluorobenzene or (*o*-fluorotoluene)Cr(CO)₃ (0.100 mmol, 1.00 equiv), **2a** (0.300 mmol, 3.00 equiv) and Ag₂CO₃ (0.150 mmol, 1.50 equiv). After the required time in each case for a moderate conversion to occur (4.5 h), the reaction was allowed to cool down to room temperature, diluted with Et₂O and filtered through silica. The yield of each arene was determined by ¹H NMR analysis of the crude mixture with an internal standard (1,3-dinitrobenzene).

A summary of the results is shown in the table below.

OMe - Cr(CO)_3 1b (1 equiv.)	+ $F_n \stackrel{fi}{\swarrow}$ + He (1 equiv.) 2a (3 equiv.)	→ OMe Me + Fn+	Me 2.0 equiv. K ₂ CO ₃ 1.5 equiv. Ag ₂ CO ₃ 0.5 equiv. 1-AdCO ₂ H 5 mol % Pd(PPh ₃) ₄ PhCH ₃ , 60 °C
Entry	Arenes	Time (h)	Yield (%)
1	1b	4.5	8
1	(o-fluorotoluene)Cr(CO) ₃		36
2	1b	4.5	14
2	1,3,5-C ₆ H ₃ F ₃		3

Characterization of chromium complexes and cross-coupling products

Et (Ethoxymethoxy)benzene tricarbonyl chromium (1a).

General procedure A was applied with using $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and (ethoxymethoxy)benzene (0.760 g, 5 mmol, 1.0 equiv).

Recrystallization from cold hexane gave the title product **1a** as a yellow solid in 81% yield (1.17 g, 4.06 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.84 (app. t, *J* = 6.6 Hz, 2H), 5.54 (d, *J* = 6.4 Hz, 2H), 5.22-5.16 (m, 3H), 3.75 (q, *J* = 7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.6, 143.2, 97.7, 95.4, 89.0, 83.2, 66.5, 16.0. IR: v = 3096, 1949, 1843, 1531, 1226, 1082, 959 cm⁻¹. Mp: 78-80 °C. HRMS EI+ *m*/*z* calcd. C₁₂H₁₃CrO₅: [M+H]⁺ 289.0163; found: [M+H]⁺ 289.0162.

Ċr(CO)₃

1a

Anisole tricarbonyl chromium (1b).

General procedure A was applied with using $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and anisole (0.640 g, 5 mmol, 1.0 equiv). Recrystallization from cold hexane gave

the title product **1b** as a yellow solid in 79% yield (0.960 g, 3.93 mmol). ¹H NMR (400 MHz, $(CD_3)_2CO$): δ (ppm) = 5.86 (app. t, J = 6.0 Hz, 2H), 5.46 (d, J = 7.2 Hz, 2H), 5.16 (app. t, J = 6.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, $(CD_3)_2CO$): δ (ppm) = 235.5, 145.8, 98.1, 88.2, 81.0, 57.0. IR: v = 3104, 1939, 1875, 1469, 1249, 991, 814 cm⁻¹. Mp: 85-87 °C. HRMS EI+ m/z calcd. $C_{10}H_9CrO_4$: [M+H]⁺ 244.9900; found: [M+H]⁺ 244.9899.

from cold hexane gave the title product **1c** as a yellow solid in 75% yield (1.156 g, 3.70 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.92 (*app* t, *J* = 6.8 Hz, 2H), 5.61 (d, *J* = 6.4 Hz, 2H), 5.25 (*app* t, *J* = 6.4 Hz, 1H), 4.65 (q, *J* = 8.4 Hz, 2H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 234.8, 142.5, 124.8 (q, J_{C-F} = 276.9 Hz), 97.3, 88.9, 81.4, 66.9 (q, *J*_{C-F} = 30.5 Hz). IR: v = 3102, 1950, 1845, 1526, 1466, 1286, 1070 cm⁻¹. Mp: 85-87 °C.

Isopropoxybenzene tricarbonyl chromium (1d).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and isopropoxybenzene (0.682 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold

hexane gave the title product **1d** as a yellow solid in 82% yield (1.113 g, 4.09 mmol). ¹H NMR (400 MHz, $(CD_3)_2CO$): δ (ppm) = 5.84 (*app* t, J = 6.8 Hz, 2H), 5.41 (d, J = 6.8 Hz, 2H), 5.11 (app t, J = 6.4 Hz, 1H), 4.51 (septet, J = 6.0 Hz, 1H), 1.34 (d, J = 6.0 Hz, 6H). ¹³C NMR (101 MHz, (CD3)2CO): δ (ppm) = 235.0, 143.9, 98.4, 87.8, 81.1, 73.2, 23.0. IR: v = 3100, 2980, 1946, 1853, 1527, 1461, 1251, 1105 cm⁻¹. Mp: 84-86 °C. HRMS EI+ m/z calcd. $C_{12}H_{13}CrO_4$: [M+H]⁺ 273.0219; found: [M+H]⁺ 273.0213.

4-Methylanisole tricarbonyl chromium (1e).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and *p*-methylanisole (0.610 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold

hexane gave the title product **1e** as a yellow solid in 79% yield (1.023 g, 3.96 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.71 (br s, 2H), 5.45 (br s, 2H), 3.70 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, (CD3)2CO): δ (ppm) = 235.9, 143.7, 104.5, 98.3, 81.7, 57.1, 20.5. IR: v = 3097, 1937, 1823, 1546, 1433, 1249, 1018 cm⁻¹. Mp: 57-59 °C. HRMS EI+ *m*/*z* calcd. C₁₁H₁₁CrO₄: [M+H]⁺ 259.0057; found: [M+H]⁺ 259.0055.

- Cr(CO)₃ If

1-Isopropoxy-4-methylbenzene tricarbonyl chromium (1f).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 1-isopropoxy-4-methylbenzene (0.750 g, 5 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1f** as a yellow solid in

80% yield (1.142 g, 3.99 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.73 (d, *J* = 6.4 Hz, 2H), 5.43 (d, *J* = 6.4 Hz, 2H), 4.44 (septet, *J* = 6.0 Hz, 1H), 2.07 (s, 3H), 1.31 (d, *J* = 5.6 Hz, 6H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.1, 142.4, 103.9, 98.6, 82.4, 73.3, 22.9, 20.5. IR: v = 3080, 2985, 1942, 1837, 1489, 1244, 936 cm⁻¹. Mp: 64-66 °C. HRMS EI+ *m*/*z* calcd. C₁₃H₁₅CrO₄: [M+H]⁺ 287.0375; found: [M+H]⁺ 287.0370.

1-Cyclohexyl-4-isopropoxybenzene tricarbonyl chromium (1g).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 1-cyclohexyl-4-isopropoxybenzene (1.09 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1g** as a yellow solid in 89% yield (1.574 g, 4.44 mmol). ¹H NMR (400 MHz, $(CD_3)_2CO$): δ (ppm) = 5.81 (d, *J* = 7.2 Hz, 2H), 5.34 (d, *J* = 7.2 Hz, 2H), 4.48 (septet, *J* = 6.0 Hz, 1H), 2.20-2.05 (m, 1H), 1.90-1.65 (m, 5H), 1.40-1.28 (m, 10H). ¹³C NMR (101 MHz, $(CD_3)_2CO$): δ (ppm) = 236.2, 144.1, 114.0, 97.7, 80.9, 73.2, 43.2, 36.1, 28.0, 27.2, 23.0. IR: v = 2983, 2930, 1958, 1858, 1515, 1245, 931 cm⁻¹. Mp: 84-86 °C. HRMS EI+ *m*/*z* calcd. C₁₈H₂₃CrO₄: [M+H]⁺ 355.1001; found: [M+H]⁺ 355.0997.

^tBu
$$- 0$$
 $- 0$

^{1h} General procedure A was applied with Cr(CO)₆ (1.43 g, 6.5 mmol, 1.3 equiv) and 1-(*tert*-butyl)-4-(ethoxymethoxy)benzene (1.04 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1h** as a yellow solid in 89% yield (1.532 g, 4.45 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.99 (d, J = 6.0 Hz, 2H), 5.43 (d, J = 6.4 Hz, 2H), 5.19 (s, 2H), 3.75 (q, J = 6.8 Hz, 2H), 1.28 (s, 9H), 1.21 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.1, 143.2, 118.8, 96.7, 95.4, 81.5, 66.6, 35.0, 32.3, 16.1. IR: v = 2971, 1943, 1839, 1483, 1228, 965 cm⁻¹. Mp: 75-77 °C. HRMS EI+ *m*/*z* calcd. C₁₆H₂₁CrO₅: [M+H]⁺ 345.0788; found: [M+H]⁺ 345.0789.

3-Methylanisole tricarbonyl chromium (1i).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 3-methylanisole (0.610 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane

gave the title product **1i** as a yellow solid in 83% yield (1.074 g, 4.16 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.86 (app t, *J* = 6.4 Hz, 1H), 5.42 (s, 1H), 5.34 (d, *J* = 6.8 Hz, 1H), 5.06 (d, *J* = 6.0 Hz, 1H), 3.77 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.8, 146.0, 113.7, 97.9, 89.2, 82.8, 78.6, 56.9, 21.6. IR: v = 3023, 1939, 1830, 1464, 1268, 1150, 988 cm⁻¹. Mp: 70-72 °C. HRMS EI+ *m*/*z* calcd. C₁₁H₁₁CrO₄: [M+H]⁺ 259.0057; found: [M+H]⁺ 259.0053.

1-(Ethoxymethoxy)-3-methylbenzene tricarbonyl chromium (1j).

Ċr(CO)₃ 1j

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 1-(ethoxymethoxy)-3-methylbenzene (0.850 g, 5.0 mmol, 1.0 equiv).

Recrystallization from cold hexane gave the title product 1j as a yellow solid in 81% yield (1.22 g,

4.05 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.86 (app t, *J* = 6.8 Hz, 1H), 5.48 (s, 1H), 5.43 (d, *J* = 7.2 Hz, 1H), 5.21 (s, 2H), 5.10 (d, *J* = 6.0 Hz, 1H), 3.76 (q, *J* = 7.2 Hz, 1H), 2.28 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.9, 143.7, 113.6, 97.8, 95.3, 89.9, 84.8, 66.5, 21.6, 16.1. IR: v = 3108, 1942, 1831, 1518, 1083 cm⁻¹. Mp: 72-74 °C. HRMS EI+ *m/z* calcd. C₁₃H₁₅CrO₅: [M+H]⁺ 303.0319; found: [M+H]⁺ 303.0318.

4-Methoxy-1,2-dimehtylbenzene tricarbonyl chromium (1k).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 4-methoxy-1,2-dimethylbenzene (0.700 g, 5 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1k** as a yellow solid in 87% yield (1.180 g,

4.33 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.82 (d, *J* = 6.8 Hz, 1H), 5.47 (d, *J* = 2.4 Hz, 1H), 5.34 (dd, *J* = 6.8, 2.4 Hz, 1H), 3.73 (s, 3H), 2.28 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.2, 144.5, 112.6, 103.2, 99.6, 84.1, 79.2, 56.9, 20.0, 18.8. IR: v = 2851, 1937, 1873, 1484, 1255, 999 cm⁻¹. Mp: 100-102 °C. HRMS EI+ *m*/*z* calcd. C₁₂H₁₃CrO₄: [M+H]⁺ 273.0219; found: [M+H]⁺ 273.0208.

 $MeO_2C - cr(CO)_3$ Methyl 4-methoxy-2-methylbenzoate tricarbonyl chromium (11).

¹¹ General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and methyl 4-methoxy-2-methylbenzoate (0.925 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane/ether (v:v = 9:1) gave the title product **11** as a yellow-orange solid in 79% yield (1.253 g, 3.96 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 6.47 (d, *J* = 6.8 Hz, 1H), 5.50-5.44 (m, 2H), 3.84 (s, 3H), 3.82 (s, 3H), 2.58 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 233.6, 167.2, 146.5, 114.6, 99.4, 88.0, 83.3, 78.1, 57.2, 53.5, 22.2. IR: v = 3025, 1955, 1851, 1539, 1242, 1081 cm⁻¹. Mp: 100-102 °C. HRMS EI+ *m*/*z* calcd. C₁₃H₁₃CrO₆: [M+H]⁺ 317.0115; found: [M+H]⁺ 317.0112.

2,4-Dimethoxy-1-methylbenzene tricarbonyl chromium (1m).

Ċr(CO)₃ 1m

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 2,4-dimethoxy-1-methylbenzene (0.821 g, 5.0 mmol, 1.0 equiv).

Recrystallization from cold hexane gave the title product **1m** as a yellow solid in 78% yield (1.123 g, 3.90 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.92 (d, *J* = 6.8 Hz, 1H), 5.59 (d, *J* = 2.0 Hz,

1H), 5.10 (dd, J = 6.4, 1.6 Hz, 1H), 3.89 (s, 3H), 3.76 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.1, 145.1, 144.8, 98.7, 93.9, 73.9, 69.5, 57.4, 57.1, 16.2. IR: v = 3116, 1935, 1853, 1463, 1157, 910 cm⁻¹. Mp: 95-97 °C. HRMS EI+ *m*/*z* calcd. C₁₂H₁₃CrO₅: [M+H]⁺ 289.0168; found: [M+H]⁺ 289.0157.

MeO₂C (1n). $\dot{c}_{r(CO)_3}$ Methyl 2,4-dimethoxylbenzoate-1-methylbenzene tricarbonyl chromium

In General procedure A was applied with Cr(CO)₆ (1.43 g, 6.5 mmol, 1.3 equiv) and methyl 2,4-dimethoxybenzoate (0.821 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane/ether (v:v = 9:1) gave the title product **1n** as a yellow solid in 82% yield (1.359 g, 4.09 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 6.44 (d, J = 6.8 Hz, 1H), 5.65 (s, 1H), 5.30 (d, J = 6.8 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 3.78 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 234.0, 166.0, 146.9, 146.2, 98.1, 81.1, 74.2, 68.6, 57.9, 57.6, 53.4. IR: v = 2952, 1955, 1730, 1246, 1086 cm⁻¹. Mp: 105-107 °C. HRMS EI+ *m/z* calcd. C₁₃H₁₂CrO₇: [M+H]⁺ 333.0066; found: [M+H]⁺ 333.0555.

mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **10** as a yellow solid in 86% yield (1.788 g, 4.28 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 6.07 (d, *J* = 6.8 Hz, 1H), 5.59 (d, *J* = 2.0 Hz, 1H), 5.17 (dd, *J* = 6.8, 2.0 Hz, 1H), 4.62 (d, *J* = 12.8 Hz, 1H), 4.39 (d, *J* = 13.2 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 0.96 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.7, 145.5, 143.9, 96.9, 95.6, 73.5, 68.8, 60.6, 57.4, 57.2, 27.0, 16.6, - 4.5. IR: ν = 3104, 2927, 1940, 1843, 1523, 1210, 1084, 712, 636 cm⁻¹. Mp: 96-98 °C. HRMS EI+ *m/z* calcd. C₁₈H₂₆CrO₆Si: [M]⁺ 418.0904 found: [M]⁺ 418.0888.

2-Methoxy-1,2,3,4-tetrahydronaphthalene chromium tricarbonyl (1p).

Ċr(CO)₃ 1p

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 2-methoxy-1,2,3,4-tetrahydronaphthalene (0.811 g, 5.0 mmol, 1.0 equiv).

Recrystallization from cold hexane gave the title product 1p as a yellow solid in 77% yield (1.148 g,

3.85 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.77 (d, J = 6.8 Hz, 1H), 5.40 (d, J = 6.8, 1.6 Hz, 1H), 5.37 (d, J = 1.6 Hz, 1H), 3.73 (s, 3H), 2.87-2.54 (m, 3H), 2.48-2.36 (m, 1H), 1.90-1.65 (m, 4H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.3, 144.2, 113.8, 104.9, 98.5, 81.0, 80.0, 57.0, 29.8, 28.9, 23.6, 23.3. IR: v = 3099, 2941, 1943, 1866, 1747, 1435, 1147, 1022, 934 cm-1. Mp: 81-83 °C. HRMS EI+ *m*/*z* calcd. C₁₄H₁₅CrO₄: [M+H]⁺ 299.0375 found: [M+H]⁺ 299.0370.

6-Methoxy-1,2,3,4-tetrahydronaphthalene-5,7-d₂ chromium tricarbonyl Cr(CO)₃ (1p-D). 1p-D

n-BuLi (2.5M solution in hexane, 2 mL, 5 mmol, 2.00 equiv) was added dropwise onto a solution of complex 1p (628 mg, 2.50 mmol) in anhydrous THF (12.0 mL) under inert atmosphere at -78 °C. After stirring at -78 °C for 1 h, D2O (1.5 mL, 83.3 mmol, 33.3 equiv) was added and the mixture was stirred for further 30 min while allowing it to warm up to room temperature. Then, the solvent was removed under reduced pressure. The resulting oil was taken up in Et₂O and filtered through silica. Solvent was removed *in vacuo*. Anhydrous THF (12.0 mL) was then added to the residue under inert atmosphere. The solution was cooled down at -78 °C and n-BuLi (2.5M solution in hexane, 2 mL, 5 mmol, 2.00 equiv) was added dropwise. After stirring at -78 °C for 1 h, D2O (1.5 mL, 83.3 mmol, 33.3 equiv) was added and the mixture was stirred for further 30 min while allowing it to warm up to room temperature. Then, the solvent was removed under reduced pressure. The resulting oil was taken up in Et₂O and filtered through silica. Solvent was removed in vacuo and following recrystallisation from cold hexane afforded the title product 1p-D as a yellow solid in 81% yield (0.607 mg, 2.02 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.18 (s, 3H), 3.79 (s, 3H), 2.86-2.75 (m, 2H), 2.71-2.60 (m, 1H), 2.54-2.42 (m, 1H), 1.92-1.70 (m, 4H). ¹³C NMR $(101 \text{ MHz}, (CD_3)_2CO): \delta (ppm) = 236.2, 144.3, 113.7, 104.8, 98.3, 80.8 (t, J_{C-D} = 26.5 \text{ Hz}), 80.8 (t, J_{C-D} = 26.5 \text{ Hz})$ _D = 26.8 Hz), 29.7, 28.8, 23.6, 23.3. IR: v = 2939, 2862, 1940, 1830, 1525, 1457, 1410 cm-1. Mp: 82-84 °C.

2-Ethoxy-1,2,3,4-tetrahydronaphthalene chromium tricarbonyl (1q).

General procedure A was applied with $Cr(CO)_6$ (1.43 g, 6.5 mmol, 1.3 equiv) and 2-ethoxy-1,2,3,4-tetrahydronaphthalene (0.880 g, 5.0 mmol, 1.0 equiv).

Recrystallization from cold hexane gave the title product **1q** as a yellow solid in 80% yield (1.238 g, 3.96 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.81 (d, *J* = 6.8 Hz, 1H), 5.41 (dd, *J* = 7.2, 2.0 Hz, 1H), 5.37 (s, 1H), 4.10-3.92 (m, 2H), 2.84-2.70 (m, 2H), 2.65 (dt, *J* = 16.4, 6.0 Hz, 1H), 2.46 (dt, *J* = 16.4, 6.0 Hz, 1H), 1.92-1.68 (m, 4H), 1.36 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz,

(CD₃)₂CO): δ (ppm) = 236.3, 143.7, 113.8, 104.6, 98.5, 81.3, 81.2, 65.9, 29.7, 28.8, 23.6, 13.3, 15.5. IR: v = 2939, 2863, 1940, 1831, 1521, 1457, 1410, 1299 cm-1. Mp: 88-90 °C.

1-Methoxy-2-methylbenzene chromium tricarbonyl (1r).

 $\frac{\text{cr}(\text{CO})_3}{\text{1r}}$ General procedure A was applied with $\text{Cr}(\text{CO})_6$ (1.43 g, 6.5 mmol, 1.3 equiv) 1r
and 1-methoxy-2-methylbenzene (0.610 g, 5 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1r** as a yellow solid in 84% yield (1.093 g, 4.23 mmol g). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 5.85 (d, *J* = 6.4 Hz, 1H), 5.71 (td, *J* = 6.8, 1.2 Hz, 1H), 5.62 (d, *J* = 6.8 Hz Hz, 1H), 5.22 (*app* t, *J* = 6.4 Hz, 1H), 3.86 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.9, 143.7, 100.3, 99.7, 95.7, 89.1, 78.3, 57.2, 16.9. IR: v = 2984, 1934, 1860, 1466, 1307, 1078, 957 cm-1. Mp: 85-87 °C. HRMS EI+ *m*/*z* calcd. C₁₁H₉CrO₄: [M+H]⁺ 259.0062 found: [M+H]⁺ 259.0057.

2,3-Dihydrobenzofuran chromium tricarbonyl (1s).

¹⁵ General procedure A was applied with chromium hexacarbonyl (1.43 g, 6.5 mmol, 1.3 equiv) and 2,3-dihydrobenzofuran (0.601 g, 5.0 mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1s** as a yellow solid in 81% yield (1.05 g, 4.12 mmol). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 6.05 (d, J = 6.0 Hz, 1H), 5.67 (app dt, J = 6.8, 1.2 Hz, 1H), 5.51 (d, J = 6.8 Hz, 1H), 5.12 (app dt, J = 6.4, 0.4 Hz, 1H), 4.70 (ddd, J = 10.0, 9.2, 3.6 Hz, 1H), 4.49 (app dt, J = 10.4, 8.8 Hz, 1H), 3.33 (app dt, J = 15.2, 10.4 Hz, 1H), 3.04 (ddd, J = 15.2, 8.8, 3.2 Hz, 1H). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 235.8, 145.6, 99.7, 96.6, 94.8, 87.8, 78.4, 73.4, 30.3. IR: v = 2984, 1943, 1842, 1455, 1179, 931 cm⁻¹. Mp: 84-86 °C. HRMS EI+ *m*/*z* calcd. C₁₁H₉CrO₄: [M+H]⁺ 256.9906 found: [M+H]⁺ 256.9897.

1t

Ċr(CO)₃

MeO

1,4-Diisopropyl-2-methylbenzene tricarbonyl chromium (1t).

General procedure A was applied with chromium hexacarbonyl (1.43 g, 6.5 mmol, 1.3 equiv) and 1,4-diisopropyl-2-methylbenzene (1.06 g, 5.0

mmol, 1.0 equiv). Recrystallization from cold hexane gave the title product **1t** as a yellow solid in 84% yield (1.44 g, 4.18 mmol). ¹H NMR (400 MHz, $(CD_3)_2CO$): δ (ppm) = 5.70 (d, *J* = 7.2 Hz, 1H), 5.56 (s, 1H), 5.32 (d, *J* = 7.2 Hz, 1H), 4.42-4.34 (m, 2H), 2.20 (s, 3H), 1.37-1.25 (m, 12H). ¹³C NMR (101 MHz, $(CD_3)_2CO$): δ (ppm) 236.7, 138.4, 134.4, 103.2, 86.4, 82.3, 79.0, 74.5, 73.4, 23.4, 23.1,

22.9 (×2), 17.4. IR: v = 2982, 1941, 1845, 1471, 1222, 1103 cm⁻¹. Mp: 72-74 °C. HRMS EI+ *m/z* calcd. C₁₆H₂₁CrO₅: [M+H]⁺ 345.0794 found: [M+H]⁺ 345.0789.

2-(Ethoxymethoxy)-4'-methyl-1,1'-biphenyl (3aa)

3aa

General procedure B was applied with arene chromium complex 1a and 4iodotoluene 2a. Flash chromatography (gradient 1-5% Et₂O in hexane) that was

performed prior to demetallation afforded the corresponding biaryl Cr(CO)₃ complex. AcOH (2 mL) and MnO₂ (130 mg, 1.5 mmol, 3 equiv) were then added and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL). Removal of solvent in vacuo afforded the title **3aa** as colourless oil in 73% yield (88.6 mg, 0.366 mmol). Crude ¹H NMR of the reaction shows an isomer ratio o:o,o:o,p = 26:1:1.7 which corresponds to a o:m:p = 95:0:5 ratio. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.43 (d, *J* = 7.6 Hz, 2H), 7.35-7.20 (m, 5H), 7.07 (app t, *J* = 6.8 Hz, 1H), 5.16 (s, 2H), 3.66 (q, *J* = 7.2 Hz, 2H), 2.40 (s, 3H), 1.19 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.6, 136.7, 135.9, 131.9, 131.0, 129.6, 128.9, 128.5, 122.2, 115.8, 93.9, 64.4, 21.3, 15.2. IR: v = 2976, 1600, 1485, 1218, 1103, 993 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₆H₂₁O₂N: [M+NH₄]⁺ 260.1645; found: [M+NH₄]⁺ 260.1647.

2-Methoxy-4'-methyl-1,1'-biphenyl (3ba).⁴

Modification of the general procedure B was applied using p-NMe₂PhCO₂H (0.5 equiv) instead of 1-AdCO₂H with arene chromium complex **1b** and 4-

iodotoluene **2a**. Flash chromatography (gradient 0.01-5% DCM in hexane) afforded the title product **3ba** as colourless oil in 69% yield (68.3 mg, 0.345 mmol). Crude ¹H NMR of the reaction shows an isomer ratio o:o.o:o.p = 18:1:1.3 which corresponds to a o:m:p = 94:0:6. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.47 (d, *J* = 8.4 Hz, 2H), 7.34 (app dt, *J* = 7.6, 1.2 Hz, 2H), 7.29-7.23 (m, 2H), 7.06 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.03-6.99 (m, 1H), 3.84 (s, 3H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 156.6, 136.7, 135.7, 130.9, 130.8, 129.5, 128.9, 128.5, 120.9, 111.3, 55.6, 21.3. IR: v = 3014, 1694, 1455, 1164, 1021 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₄H₁₅O: [M+H]⁺ 199.1118 found: [M+H]⁺ 199.1117.

4'-methyl-2-(2,2,2-trifluoroethoxy)-1,1'-biphenyl (3ca).

Modification of the general procedure B was applied using p-NMe₂PhCO₂H (0.5 equiv) instead of 1-AdCO₂H with arene chromium complex **1c** and 4-iodotoluene **2a**. Flash chromatography (gradient 0.01-5% DCM in hexane)

afforded the title product **3ca** as colourless oil in 80% yield (106.4 mg, 0.400 mmol). Crude ¹H NMR of the reaction shows an isomer ratio o: o,o: o,p = 28:1.7:1 which corresponds to a o:m:p = 97:0:3 ratio. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.44 (d, *J* = 8.0 Hz, 2H), 7.38 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.34-7.28 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.15 (app t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 4.24 (q, *J* = 8.4 Hz, 1H) , 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.7, 137.2, 134.7, 132.1, 131.5, 129.4, 129.0, 128.6, 123.5 (d, *J*_{C-F} = 248.6 Hz), 123.4, 114.8, 67.0 (q, *J*_{C-F} = 35.3 Hz), 21.3. IR: v = 2930, 1488, 1229, 1163, 977 cm⁻¹.

2-isopropoxy-4'-methyl-1,1'-biphenyl (3da).

3da

General procedure B was applied with arene chromium complex 1d and 4iodotoluene 2a. Flash chromatography (gradient 1-5% Et_2O in hexane) was performed prior to demetallation affording the corresponding biaryl $Cr(CO)_3$

complex. AcOH (2 mL) and MnO₂ (130 mg, 1.5 mmol, 3 equiv) were then added and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL). Removal of the solvent *in vacuo* afforded the title product **3da** as colourless oil in 64% yield (72.5 mg, 0.320 mmol). Crude ¹H NMR of the reaction shows an isomer ratio o: o,o: o,p = 9:1:1 which corresponds to a o:m:p = 92:0:8 ratio. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.37 (d, *J* = 8.4 Hz, 2H), 7.23 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.16 (dt, *J* = 8.0, 1.6 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.94-6.85 (m, 2H), 4.33 (septet, *J* = 6.4 Hz, 1H), 2.30 (s, 3H), 1.16 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 155.0, 136.4, 136.1, 132.2, 131.2, 129.6, 128.7, 128.2, 121.2, 115.4, 71.0, 22.2, 21.3. IR: v = 3024, 2976, 1481, 1259, 1108 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₆H₁₉O: [M+H]⁺ 227.1430 found: [M+H]⁺ 227.1432.

2-Methoxy-4',5-dimethyl-1,1'-biphenyl (3ea).⁵

General procedure B was applied with arene chromium complex 1e and 4iodotoluene 2a. Flash chromatography (gradient 0.01-5% DCM in hexane) afforded

the title product **3ea** as colourless oil in 74% yield (78.4 mg, 0.370 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.33 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.05-6.97 (m, 2H), 6.78 (dd, *J* = 8.0, 2.4 Hz, 1H), 3.68 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.6, 136.6, 135.8, 131.7, 130.6, 130.1, 129.5, 128.8, 128.7, 111.5, 55.9, 21.3, 20.6. IR: v = 3021, 2921, 1495, 1237, 1028, 820 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₅H₁₇O: [M+H]⁺ 213.1274 found: [M+H]⁺ 213.1274.

2-Isopropoxy-4',5-dimethyl-1,1'-biphenyl (3fa).

General procedure C was applied with arene chromium complex **1f** and 4- **3fa** iodotoluene **2a**. Flash chromatography (gradient 0.01-5% DCM in hexane) afforded the title product **3fa** as colourless oil in 64% yield (77.1 mg, 0.321 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.49 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 2.0 Hz, 1H), 7.09 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 4.35 (septet, *J* = 6.0 Hz, 1H), 2.42 (s, 3H), 2.36 (s, 3H), 1.25 (d, *J* = 6.0 Hz, 6H) . ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 152.9, 136.3, 136.2, 132.2, 131.8, 130.6, 129.5, 128.9, 128.7, 116.2, 71.4, 22.2, 21.3, 20.7. IR: v = 3021, 2975, 1492, 1230, 1110, 953 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₇H₂₁O: [M+H]⁺ 241.1587 found: [M+H]⁺ 241.1587.

5-Cyclohexyl-2-isopropoxy-4'-methyl-1,1'-biphenyl (3ga).

OFt

tBu **3ha** General procedure C was applied with arene chromium complex 1g and 4iodotoluene 2a. Flash chromatography (gradient 1-5% Et₂O in hexane) was performed prior to demetallation affording the corresponding biaryl Cr(CO)₃

complex. AcOH (2 mL) and MnO₂ (130 mg, 1.5 mmol, 3 equiv) were then added and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo* and afford the title product **3ga** as colourless oil in 76% yield (117.1 mg, 0.380 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.38 (d, *J* = 8.0 Hz, 2H), 7.14-7.05 (m, 3H), 6.99 (dd, *J* = 8.0, 2.4 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 4.27 (septet, *J* = 6.0 Hz, 1H), 2.48-2.32 (m, 1H), 2.30 (s, 3H), 1.85-1.60 (m, 5H), 1.14-1.15 (m, 5H), 1.14 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 153.1, 140.8, 136.5, 136.2, 131.8, 129.6, 129.6, 128.6, 126.3, 115.4, 71.1, 43.9, 34.8, 27.1, 26.3, 22.3, 21.3. IR: v = 3022, 2922, 1488, 1235, 1111 cm⁻¹. HRMS EI+ *m/z* calcd. C₂₂H₂₉O: [M+H]⁺ 309.2213 found: [M+H]⁺ 309.2213.

5-(Tert-butyl)-2-(ethoxymethoxy)-4'-methyl-1,1'-biphenyl (3ha).

General procedure C was applied with arene chromium complex **1h** and 4iodotoluene **2a**. Flash chromatography (gradient 1-5% DCM in hexane) afforded the title product **3ha** as colourless oil in 81% yield (120.7 mg, 0.404 mmol). ¹H

NMR (400 MHz, CDCl₃): δ (ppm) = 7.50 (d, J = 7.2 Hz, 2H), 7.42-7.34 (m, 2H), 7.29 (d, J = 7.2 Hz, 2H), 7.24 (dd, J = 8.4, 1.2 Hz, 1H), 5.20 (s, 2H), 3.67 (q, J = 7.2 Hz, 2H), 2.47 (s, 3H), 1.40 (s, 9H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 152.4, 144.9, 136.6, 136.4, 131.3,

129.6, 128.8, 128.1, 125.3, 115.6, 94.1, 64.3, 34.4, 31.7, 21.3, 15.2. IR: v = 3025, 2960, 1517, 1493, 1223, 1104, 994 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₉H₂₅O₂: [M+H]⁺ 285.1855; found: [M+H]⁺ 285.1883.

2-Methoxy-4,4'-dimethyl-1,1'-biphenyl (3ia).

General procedure B was applied with arene chromium complex **1i** and 4iodotoluene **2a**. Flash chromatography (gradient 2-10% DCM in hexane) afforded **3ia** the title product **3ia** as colourless oil in 69% yield (73.5 mg, 0.346 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.32 (d, *J* = 8.4 Hz, 2H), 7.15-7.06 (m, 3H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.70 (s, 1H), 3.69 (s, 3H), 2.30 (s, 3H), 2.29 (s, 3H) ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 156.5, 138.5, 136.4, 135.8, 130.7, 129.5, 128.8, 128.0, 121.6, 112.3, 55.6, 21.7, 21.3. IR: v = 2919, 1610, 1495, 1275, 1005, 804 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₅H₁₇O: [M+H]⁺ 213.1274; found: [M+H]⁺ 213.1271.

3ka

2-(Ethoxymethoxy)-4,4'-dimethyl-1,1'-biphenyl (3ja).

2-Methoxy-4,4',5-trimethyl-1,1'-biphenyl (3ka).

General procedure C was applied with arene chromium complex 1k and 4iodotoluene 2a. Flash chromatography (gradient 2-10% DCM in hexane) afforded

the title product **3ka** as colourless oil in 93% yield (104.9 mg, 0.463 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.32 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.98 (s, 1H), 6.68 (s, 1H), 3.66 (s, 3H), 2.27 (s, 3H), 2.20 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ

(ppm) = 154.6, 136.6, 136.3, 135.8, 132.1, 129.5, 128.8, 128.6, 128.2, 113.2, 55.9, 21.3, 20.0, 18.8IR: v = 3020, 2920, 1612, 1497, 1203, 820 cm⁻¹. HRMS EI+ m/z calcd. C₁₆H₁₉O: [M+H]⁺ 227.1430; found: [M+H]⁺ 227.1430.

Methyl 6-methoxy-4,4'-dimethyl-[1,1'-biphenyl]-3-carboxylate (3la).

General procedure C was applied with arene chromium complex 11 and 4-ĊO₂Me iodotoluene 2a. Flash chromatography (gradient 10-20% Et₂O in hexane) afforded 3la the title product **3la** as colourless oil in 88% yield (119.1 mg, 0.441 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.97 (s, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.81 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 2.69 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 167.7, 159.2, 142.3, 137.0, 134.5, 134.7, 133.8, 128.9, 128.2, 121.7, 114.1, 55.7, 51.6, 22.4, 21.3. IR: v = 2996, 1713, 1469, 1300, 1205, 823 cm⁻¹. HRMS EI+ m/z calcd. $C_{17}H_{18}O_3Na_1$: $[M+Na]^+$ 293.1148; found: [M+Na]⁺ 293.1143.

2,4-Dimethoxy-4',5-dimethyl-1,1'-biphenyl (3ma).

General procedure C was applied with arene chromium complex 1m and 4iodotoluene 2a. Flash chromatography (gradient 1-5% Et₂O in hexane) afforded the title product **3ma** as colourless oil in 92% yield (111.4 mg, 0.460 mmol). ¹H 3ma NMR (400 MHz, CDCl₃): δ (ppm) = 7.30 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.99 (s, 1H), 6.43 (s, 1H), 3.78 (s, 3H), 3.69 (s, 3H), 2.28 (s, 3H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 157.8, 155.6, 136.1, 135.7, 132.6, 129.4, 128.8, 122.6, 118.7, 96.0, 56.2, 55.7, 21.3, 15.4. IR: $v = 2923, 2833, 1612, 1504, 1306, 1204, 819 \text{ cm}^{-1}$. HRMS EI+ m/z calcd. $C_{16}H_{19}O_2$: [M+H]⁺ 243.1380; found: [M+H]⁺ 243.1378.

Methyl 4,6-dimethoxy-4'-methyl-[1,1'-biphenyl]-3-carboxylate (3na).

General procedure C was applied with arene chromium complex 1n and 4-ĊO₂Me iodotoluene 2a. Flash chromatography (gradient 10-20% Et₂O in hexane) afforded the title product **3na** as colourless oil in 86% yield (123.3 mg, 0.431

mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.88 (s, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.22 (d Hz, 2H), 6.56 (s, 1H), 3.98 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, $CDCl_3$): δ (ppm) = 166.1, 161.0, 160.9, 136.7, 134.5, 134.4, 129.4, 128.9, 123.0, 111.9, 95.9, 56.4,

3na

55.8, 51.8, 21.3. IR: v = 2996, 1713, 1563, 1300, 1205, 822 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₇H₁₉O₄: [M+H]⁺ 287.1278; found: [M+H]⁺ 287.1279.

tert-Butyl((4,6-dimethoxy-4'-methyl-[1,1'-biphenyl]-3yl)methoxy)dimethylsilane (3oa).

30a General procedure C was applied with arene chromium complex **10** and 4iodotoluene **2a**. Flash chromatography (gradient 1-5% Et₂O in hexane) afforded the title product **30a** as colourless oil in 89% yield (166.0 mg, 0.446 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.45 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.55 (s, 1H), 4.77 (s, 2H), 3.90 (s, 3H), 3.83 (s, 3H), 2.41 (s, 3H), 0.97 (s, 9H), 0.14 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 156.6, 156.5, 136.0, 135.8, 129.9, 129.4, 128.8, 122.7, 122.1, 95.6, 60.1, 56.1, 55.6, 26.2, 21.3, 18.6, -5.1 IR: v = 2984, 2855, 1614, 1461, 1274, 1141, 819 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₂₂H₃₃O₃Si: [M+H]⁺ 373.2193; found: [M+H]⁺ 373.2004.

6-Methoxy-7-(p-tolyl)-1,2,3,4-tetrahydronaphthalene (3pa).

3qa

General procedure C was applied with arene chromium complex **1p** and 4iodotoluene **2a**. Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3pa** as colourless oil in 90% yield (113.8 mg, 0.451 mmol). ¹H

NMR (400 MHz, CDCl₃): δ (ppm) = 7.31 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.91 (s, 1H), 6.57 (s, 1H), 3.66 (s, 3H), 2.75-2.58 (m, 4H), 2.28 (s, 3H), 1.78-1.62 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.5., 137.2, 136.4, 135.8, 131.4, 129.5, 129.3, 128.8, 128.5, 111.8, 55.8, 29.7, 28.7, 23.6, 23.4, 21.3. IR: v = 2923, 1610, 1496, 1224, 1038, 730 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₈H₂₁O₁: [M+H]⁺ 253.1587; found: [M+H]⁺ 253.1587.

6-Ethoxy-7-(p-tolyl)-1,2,3,4-tetrahydronaphthalene (3qa).

General procedure C was applied with arene chromium complex **1q** and 4iodotoluene **2a**. Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3qa** as colourless oil in 88% yield (117.1 mg, 0.440 mmol). ¹H

NMR (400 MHz, CDCl₃): δ (ppm) = 7.45 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 7.2 Hz, 2H), 7.03 (s, 1H), 6.68 (s, 1H), 3.99 (q, J = 6.8 Hz, 2H), 2.84-2.70 (m, 4H), 2.40 (s, 3H), 1.92-1.70 (m, 4H). ¹³C NMR

(101 MHz, CDCl₃): δ (ppm) = 153.8, 137.1, 136.2, 135.9, 131.5, 129.5, 129.4, 128.7, 113.5, 64.4, 29.7, 28.7, 23.6, 23.4, 21.3, 15.0. IR: v = 2923, 1611, 1496, 1392, 1065, 820 cm⁻¹.

2-Methoxy-3,4'-dimethyl-1,1'-biphenyl (3ra).

General procedure B was applied with arene chromium complex **1r** and 4iodotoluene **2a**. Flash chromatography (gradient 1-5% Et₂O in hexane) was performed prior to demetallation and afforded the corresponding biaryl Cr(CO)₃ complex. AcOH (2 mL) and MnO₂ (130 mg, 1.5 mmol, 3 equiv) were then added and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL). Removal of the solvent *in vacuo* afforded the title product **3ra** as colourless oil in 12% yield. Crude ¹H NMR of the reaction shows an isomer ratio o:p= 4:1. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.49 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.20-7.14 (m, 2H), 7.06 (*app* t, J = 7.6 Hz, 1H), 3.39 (s, 3H), 2.40 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 156.1, 136.7, 136.0, 134.9, 131.6, 130.2, 129.1, 129.1, 128.9, 124.0. 59.9, 21.3, 16.4. IR: v = 2967, 1613, 1421, 1234, 1039, 960 cm⁻¹.

7-(p-Tolyl)-2,3-dihydrobenzofuran (3sa).

General procedure B was applied with arene chromium complex **1s** and 4iodotoluene **2a** without the employment of 2,2,6,6-tetramethylpiperidine and for longer reaction time (60h). Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3sa** as colourless oil in 72% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.50 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.83 (*app* t, *J* = 7.6 Hz, 1H), 4.50 (t, *J* = 8.8 Hz, 2H), 3.16 (t, *J* = 8.8 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 157.3, 136.9, 134.6, 129.2, 128.3, 127.8, 123.8, 123.7, 120.9, 71.1, 30.0, 21.3. IR: v = 2975, 1517, 1450, 1201, 986, 821 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₅H₁₅O: [M+H]⁺ 211.1117; found: [M+H]⁺ 211.1117.

2,5-Diisopropoxy-4,4'-dimethyl-1,1'-biphenyl (ta).

General procedure C was applied with arene chromium complex 1t and 4iodotoluene 2a. Flash chromatography (gradient 1-5% Et_2O in hexane) that was performed prior to demetallation afforded the corresponding biaryl $Cr(CO)_3$ complex. AcOH (2 mL) and MnO₂ (130 mg, 1.5 mmol, 3 equiv) were then added and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo* and afford the title product **3ta** as colourless oil in 81% yield (120.7 mg, 0.404 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.49 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.87 (s, 1H), 6.84 (s, 1H), 4.46 (septet, *J* = 6.0 Hz, 1H), 4.21 (septet, *J* = 6.0 Hz, 1H), 2.42 (s, 3H), 2.27 (s, 3H), 1.37 (d, *J* = 6.0 Hz, 6H), 1.20 (d, *J* = 6.0 Hz, 6H) ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 150.9, 148.7, 136.4, 136.2, 130.7, 129.5, 128.7, 128.0, 120.3, 117.1, 72.4, 71.5, 22.5, 22.3, 21.3, 16.5. IR: v = 2974, 1492, 1381, 1196, 957, 820 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₂₀H₂₇O₂: [M+H]⁺ 299.2006; found: [M+H]⁺ 299.2006.

2,4'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kb).

3kb

General procedure C was applied with arene chromium complex 1k and 4iodoanisole 2b. Flash chromatography (gradient 2-20% DCM in hexane) afforded the title product 3kb as colourless oil in 91% yield (110.2 mg, 0.455

mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.59 (d, *J* = 8.8 Hz, 2H), 7.21 (s, 1H), 7.06 (d, *J* = 8.8 Hz, 2H), 6.90 (s, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 158.5, 154.5, 136.3, 131.9, 131.1, 130.6, 128.6, 127.7, 113.5, 113.2, 55.8, 55.2, 19.9, 18.8. IR: v = 2835, 2863, 1578, 1497, 1243, 831 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₆H₁₉O₂: [M+H]⁺ 243.1380; found: [M+H]⁺ 243.1378.

(2'-Methoxy-4',5'-dimethyl-[1,1'-biphenyl]-4-yl)(methyl)sulfane (3kc).

General procedure C was applied with arene chromium complex 1k and 4iodothioanisole 2c. Flash chromatography (gradient 2-15% DCM in hexane)

3kc afforded the title product **3kc** as colourless oil in 90% yield (116.4 mg, 0.450 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.53 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.15 (s, 1H), 6.85 (s, 1H), 3.84 (s, 3H), 2.56 (s, 3H), 2.38 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.5, 136.9, 136.6, 135.6, 131.9, 129.9, 128.7, 127.4, 126.5, 113.3, 55.9, 20.0, 18.8, 16.1 IR: v = 2918, 1899, 1463, 1487, 1204, 1043, 823 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₆H₁₉OS: [M+H]⁺ 259.1151; found: [M+H]⁺ 259.1148.

4'-Fluoro-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3kd).

General procedure C was applied with arene chromium complex **1k** and 1fluoro-4-iodobenzene **2d**. Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3kd** as colourless oil in 90% yield (103.9 mg, 0.451 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.40-7.33 (m, 2H), 6.99-

6.91 (m, 3H), 6.67 (s, 1H), 3.66 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 162.3 (d, *J* = 246.1 Hz), 154.5, 137.0, 134.6, 132.0, 131.1 (d, *J* = 8.0 Hz, 1H), 128.7, 127.1, 114.9 (d, *J* = 21.2 Hz), 113.3, 55.9, 20.0, 18.8. IR: v = 2936, 2862, 1603, 1497, 1219, 1045, 835 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₅H₁₆OF: [M+H]⁺ 231.1180; found: [M+H]⁺ 231.1177.

3ke

4'-Chloro-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3ke).

General procedure C was applied with arene chromium complex 1k and 1chloro-4-iodobenzene 2e. Flash chromatography (gradient 2-10% DCM in hexane)

afforded the title product **3ke** as colourless oil in 91% yield (112.1 mg, 0.454 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.51 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.12 (s, 1H), 6.84 (s, 1H), 3.83 (s, 3H), 2.37 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.5, 137.3, 137.1, 132.6, 131.9, 130.9, 128.8, 128.2, 126.8, 113.3, 55.9, 20.1, 18.8 IR: v = 2936, 2838, 1613, 1486, 1295, 1090, 830 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₅H₁₆OCl: [M+H]⁺ 247.0084; found: [M+H]⁺ 247.0880.

4'-Bromo-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3kf).

General procedure C was applied with arene chromium complex **1k** and 1bromo-4-iodobenzene **2f**. Flash chromatography (gradient 2-10% DCM in **3kf** hexane) afforded the title product **3kf** as colourless oil in 91% yield (132.7 mg, 0.456 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.59 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.15 (s, 1H), 6.87 (s, 1H), 3.86 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.4, 137.6, 137.4, 131.8, 131.2, 128.8, 126.8, 120.8, 113.3, 55.8, 20.1, 18.8. IR: 2935, 1611, 1484, 1205, 1044, 826 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₅H₁₆OBr: [M+H]⁺ 291.0379; found: [M+H]⁺ 291.0378.

2-Methoxy-4,5-dimethyl-1,1':4',1''-terphenyl (3kg).

COMe

3ki

3kg

General procedure C was applied with arene chromium complex 1k and 4iodo-1,1'-biphenyl **2g**. Flash chromatography (gradient 3-15% DCM in hexane) afforded the title product 3kg as colourless oil in 89% yield (128.5 mg, 0.446 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.52-7.48 (m, 6H), 7.35-7.29 (m, 2H), 7.24-7.12 (m, 1H), 7.04 (s, 1H), 6.60 (s, 1H), 3.68 (s, 3H), 2.20 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.7, 141.2, 139.5, 137.7, 137.0, 132.1, 130.0, 128.8, 128.7, 127.6, 127.2 (x2), 126.8, 113.3, 55.9, 20.1, 18.9. IR: v = 3057, 2935, 1601, 1484, 1204, 1127, 841 cm⁻¹. HRMS EI+ m/z calcd. C₂₁H₂₁O: [M+H]⁺ 288.1509; found: [M+H]⁺ 288.1506.

Methyl 2'-methoxy-4',5'-dimethyl-[1,1'-biphenyl]-4-carboxylate (3kh).

3kh mg, 0.445 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.10 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.15 (s, 1H), 6.84 (s, 1H), 3.96 (s, 3H), 3.81 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H). ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3)$: δ (ppm) = 167.2, 154.6, 143.5, 137.8, 131.9, 129.5, 129.3, 128.8, 128.2, 126.9, 113.3, 55.8, 52.0, 20.0, 18.8 IR: v = 2949, 1718, 1607, 1274, 1101, 706 cm⁻¹. HRMS EI+ m/z calcd. $C_{17}H_{19}O_3$: $[M+H]^+$ 271.1329; found: $[M+H]^+$ 271.1328.

1-(2'-Methoxy-4',5'-dimethyl-[1,1'-biphenyl]-4-yl)ethanone (3ki).

General procedure B was applied with arene chromium complex 1k and 4'-iodoacetophenone 2i. Flash chromatography (gradient 1-5% Et₂O in hexane) afforded the title product 3ki as colourless oil in 89% yield (113.0

mg, 0.445 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.00 (d, J = 8.4 Hz, 2H), 7.64 (d, J Hz, 2H), 7.12 (s, 1H), 6.82 (s, 1H), 3.81 (s, 3H), 2.63 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H). ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3)$: δ (ppm) = 197.9, 154.6, 143.8, 138.0, 135.3, 131.9, 129.7, 128.9, 128.1, 126.8, 113.3, 55.9, 26.7, 20.1, 18.8 IR: v = 2999, 1678, 1603, 1265, 1101, 842 cm⁻¹. HRMS EI+ m/z calcd. $C_{17}H_{19}O_2$: [M+H]⁺ 255.1380; found: [M+H]⁺ 255.1373.

2-Methoxy-3',4,5-trimethyl-1,1'-biphenyl (3kj).

General procedure C was applied with arene chromium complex **1k** and 3iodotoluene **2j**. Flash chromatography (gradient 2-5% DCM in hexane) afforded the title product **3kj** as colourless oil in 89% yield (100.6 mg, 0.445 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.42-7.31 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.15 (s, 1H), 6.85 (s, 1H), 3.83 (s, 3H), 2.46 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃): δ (ppm) = 154.6, 138.7, 137.5, 136.8, 132.2, 130.3, 128.6, 128.3, 127.9, 127.5, 126.8, 113.3, 59.9, 21.7, 20.1, 18.9. IR: v = 2920, 1605, 1301, 1250, 1052, 843 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₆H₁₉O: [M+H]⁺ 227.1430; found: [M+H]⁺ 227.1428.

2,3'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kk).

General procedure C was applied with arene chromium complex 1k and 3iodoanisole 2k. Flash chromatography (gradient 2-5% Et₂O in hexane) afforded

3kk the title product **3kk** as colourless oil in 87% yield (105.3 mg, 0.435 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.37 (app t, J = 8.0 Hz, 1H), 7.20-7.13 (m, 3H), 6.92 (dd, J = 8.0, 1.6 Hz, 1H), 6.84 (s, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) =159.4, 154.6, 140.1, 137.0, 132.1, 129.0, 128.7, 128.0, 122.1, 115.4, 113.3, 112.3, 55.9, 55.3, 20.1, 18.8. IR: v = 2936, 1599, 1480, 1460, 1248, 1040 cm⁻¹. HRMS EI+ m/z calcd. C₁₆H₁₉O₂: [M+H]⁺ 243.1380; found: [M+H]⁺ 243.1379.

Methyl 2'-methoxy- 4',5'-dimethyl-[1,1'-biphenyl]-3-carboxylate (3kl).

3kl

General procedure C was applied with arene chromium complex 1k and methyl 3-iodobenzoate 2l. Flash chromatography (gradient 10-25% Et₂O in hexane) afforded the title product 3kl as colourless oil in 85% yield (115.0

mg, 0.425 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.20 (s, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.46 (*app* t, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 6.81 (s, 1H), 3.94 (s, 3H), 3.80 (s, 3H), 2.33 (s, 3H), 2.27 (s, 3H) ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 167.4, 154.6, 139.0, 137.5, 134.2, 132.0, 130.7, 130.1, 128.9, 128.0, 127.9, 127.0, 113.3, 59.9, 52.2, 20.1, 18.9 IR: v = 2950, 1721, 1509, 1305, 1108, 761 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₇H₂₂O₃N: [M+NH₄]⁺ 288.1594; found: [M+NH₄]⁺ 288.1591.

2-Methoxy-2',4,5-trimethyl-1,1'-biphenyl (3km).

Modification of the general procedure C was applied (2 equiv of iodoarene and 1.0 equiv of Ag_2CO_3 were employed, reaction time = 40 h) with complex **1k** and 2-iodotoluene **2m**. Flash chromatography (gradient 2-5% DCM in hexane) afforded the title product **3km** as colourless oil in 71% yield (80.3 mg, 0.355 mmol). ¹H NMR

(400 MHz, CDCl₃): δ (ppm) = 7.18-7.06 (m, 4H), 6.83 (s, 1H), 6.68 (s, 1H), 3.64 (s, 3H), 2.24 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.8, 138.8, 137.1, 136.7, 132.4, 130.3, 129.7, 128.3, 128.2, 127.2, 125.5, 112.7, 55.8, 20.2, 20.1, 18.9 IR: v = 2924, 1614, 1453, 1204, 757 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₆H₁₉O: [M+H]⁺ 227.1430; found: [M+H]⁺ 227.1428.

2,2'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kn).

Modification of the general procedure C was applied (2 equiv of iodoarene and 1.0 equiv of Ag_2CO_3 were employed, reaction time = 40h) with complex **1k** and 2-

_{3kn} iodoanisole **3n**. Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3kn** as colourless oil in 64% yield (77.7 mg, 0.321 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.33 (dt, J = 8.0, 1.6 Hz, 1H), 7.24 (dd, J = 7.7, 1.6 Hz, 1H), 7.04-6.94 (m, 3H), 6.79 (s, 1H), 3.79 (s, 3H), 3.75 (s, 3H), 2.31 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 157.3, 155.2, 136.9, 132.7, 131.7, 128.5, 128.3, 128.0, 125.3, 120.5, 113.3, 111.1, 56.1, 55.8, 20.2, 18.9 IR: v = 2935, 1600, 1488, 1242, 1053 cm⁻¹. HRMS EI+ *m/z* calcd. C₁₆H₁₉O₂: [M+H]⁺ 243.1380; found: [M+H]⁺ 243.1379.

2'-Fluoro-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3ko).

Modification of the general procedure C was applied (2 equiv of iodoarene and 1.0 ^{3ko} equiv of Ag₂CO₃ were employed, reaction time = 40h) with complex **1k** and 2-fluoro iodobenzene **3o**. Flash chromatography (gradient 2-10% DCM in hexane) afforded the title product **3ko** as colourless oil in 59% yield (67.8 mg, 0.295 mmol), . ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.37-7.27 (m, 2H), 7.16 (dt, J = 7.6, 1.6 Hz, 1H), 7.10 (ddd, J = 8.4, 7.6, 1.2 Hz, 1H), 7.04 (s, 1H), 3.78 (s, 3H), 2.32 (s, 3H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 160.2 (d, *J* = 248.1 Hz), 155.1, 137.8, 132.5, 132.1 (d, *J* = 3.6 Hz), 128.8 (d, *J* = 8.2 Hz), 128.5, 126.4 (d, *J* = 16.0 Hz), 123.8 (d, *J* = 3.5 Hz), 122.3, 115.5 (d, *J* = 22.7 Hz), 113.1, 56.0, 20.2, 18.9 IR: v = 2928, 1514, 1487, 1307, 1233, 1131, 824 cm⁻¹. HRMS EI+ *m*/*z* calcd. C₁₅H₁₆OF: [M+H]⁺ 231.1185; found: [M+H]⁺ 231.1174.

Synthesis, direct arylation and derivatization of Cr(CO)₃ estradiol complex 1u

(8*R*,9*S*,13*S*,14*S*,17*S*)-3,17-Dimethoxy-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[*a*]phenanthrene chromium tricarbonyl (1u).

General procedure A was applied with chromium hexacarbonyl (1.43 g, 6.5 mmol, 1.3 equiv) and 4 (8R,9S,13S,14S,17S)-3,17-dimethoxy-13-methyl-1u 7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthrene (1.50 g, 5.0 mmol, 1.0 equiv).⁶ Recrystallization from cold hexane gave the title product **1u** as a yellow solid (2.03 g, 93% yield) as a facial mixture of diastereoisomers (1.1:1). ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 6.08 (minor, d, J = 7.2 Hz, 1H), 5.94 (major, d, J = 7.2 Hz, 1H), 5.41 (minor, dd, J = 7.2 Hz, 1H), 5.35 (major + minor, app d, J = 2.4 Hz, 2H), 5.23 (major, dd, J = 7.2, 2.4 Hz, 1H), 3.77 (major, s, 3H), 3.73 (minor, s, 3H), 3.33-3.24 (major + minor, m, 8H), 3.10-2.75 (major + minor, m, 4H), 2.30-1.80 (major + minor, m, 8H), 1.77-1.10 (major + minor, m, 18H), 0.81 (major, s, 3H), 0.77 (minor, s, 3H). ¹³C NMR $(101 \text{ MHz}, (CD_3)_2CO)$: δ (ppm) = 235.9 (major), 235.4 (minor), 144.7 (major), 144.1 (minor), 113.8 (major), 113.4 (minor), 109.0 (major), 106.6 (minor), 95.7 (minor), 94.8 (major), 91.1 (major), 91.0 (minor), 80.5 (major), 80.1 (minor), 79.2 (minor), 77.7 (major), 57.9 (major), 57.9 (minor), 56.2 (major + minor, 2C), 50.6 (major), 50.3 (minor), 44.2 (minor), 43.9 (major + minor, 2C), 43.3 (minor), 39.4 (minor), 38.7 (major), 38.3 (minor), 38.2 (major), 30.7 (major + minor, 2C), 28.4 (minor), 28.3 (major), 27.3 (minor), 27.1 (major), 26.7 (major), 26.6 (minor), 23.7 (minor), 23.6 (minor), 12.0 (minor), 11.9 (major). IR: v = 2934, 1933, 1861, 1475, 1541, 1381, 1272, 1105, 932 cm⁻ ¹. Mp: 134-136 °C. HRMS EI+ m/z calcd. C₂₃H₂₉O₅Cr: [M+H]⁺ 437.1420; found: [M+H]⁺ 437.1415.

methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthrene (3ub).

(8R,9S,13S,14S,17S)-3,17-Dimethoxy-2-(4-methoxyphenyl)-13-

General procedure C was applied with arene chromium complex 1uaubGeneral procedure C was applied with arene chromium complex 1uand 4-iodoanisole 2b. Flash chromatography (gradient 1-10% Et₂O inhexane) afforded the title product 3ub as colourless oil in 88% yield (178.5 mg, 0.439 mmol). ¹HNMR (400 MHz, CDCl₃): δ (ppm) = 7.36 (d, J = 8.4 Hz, 2H), 7.13 (s, 1H), 6.84 (d, J = 8.8 Hz, 2H),6.59 (s, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 3.28 (s, 3H), 3.22 (t, J = 8.0 Hz, 1H), 2.90-2.72 (m, 2H), 2.28-2.08 (m, 2H), 2.10-1.90 (m, 2H), 1.90-1.75 (m, 1H), 1.67-1.08 (m, 8H), 0.71 (s, 3H). ¹³C NMR (101MHz, CDCl₃): δ (ppm) = 158.6, 154.4, 136.8, 132.7, 131.4, 130.7, 128.0, 127.9, 113.6, 111.7, 90.9,

58.0, 55.7, 55.4, 50.4, 44.1, 43.4, 38.8, 38.2, 29.9, 27.9, 27.4, 26.6, 23.2, 11.7. IR: v = 2838, 1609, 1495, 1356, 904, 727 cm⁻¹. HRMS EI+ m/z calcd. C₂₇H₃₄O₃: [M]⁺ 406.2502; found: [M]⁺ 406.2493.

^{3uf} General procedure C was applied with arene chromium complex **1u** and 4-bromo iodobenzene **2f**. Flash chromatography (gradient 1-10% Et₂O in hexane) afforded the title product **3uf** as a white solid in 86% yield (195.4 mg, 0.430 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.54 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.24 (s, 1H), 6.74 (s, 1H), 3.80 (s, 3H), 3.42 (s, 3H), 3.35 (t, *J* = 8.0 Hz, 1H), 3.05-2.80 (m, 2H), 2.39-2.2 (m, 2H), 2.18-2.05 (m, 2H), 2.00-1.91 (m, 1H), 1.80-1.68 (m, 1H), 1.67-1.20 (m, 7H), 0.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 154.4, 137.9, 137.7, 132.9, 131.3, 131.1, 127.8, 126.9, 120.8, 111.8, 90.8, 58.0, 55.7, 50.4, 44.0, 43.3, 38.7, 38.1, 29.9, 27.9, 27.4, 26.6, 23.2, 11.7. IR: v = 2867, 1610, 1482, 1356, 1127, 905, 728 cm⁻¹. HRMS EI+ *m/z* calcd. C₂₆H₃₂O₂Br: [M+H]⁺ 455.1580; found: [M+H]⁺ 455.1568.

Methyl 4-((8R,9S,13S,14S,17S)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-2-yl)benzoate (3uh).

^{3uh} General procedure C was applied with arene chromium complex **1t** and 4-methyl iodobenzoate **2h**. Flash chromatography (gradient 1-10% Et₂O in hexane) afforded the title product **3uh** as colourless oil in 90% yield (195.5 mg, 0.450 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.95 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.14 (s, 1H), 6.60 (s, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.27 (s, 3H), 3.21 (t, *J* = 8.4 Hz, 1H), 2.84-2.75 (m, 2H), 2.30-1.90 (m, 4H), 1.86-1.75 (m, 1H), 1.68-1.51 (m, 1H), 1.50-1.05 (m, 7H), 0.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 167.2, 154.4, 143.9, 138.2, 132.9, 129.5, 129.2, 128.2, 127.9, 127.1, 111.8, 90.8, 57.9, 55.7, 52.0, 50.3, 43.9, 43.3, 38.7, 38.1, 29.9, 27.8, 27.6, 26.6, 23.1, 11.7. IR: v = 2932, 1716, 1609, 1277, 905, 727 cm⁻¹. HRMS EI+ *m*/z calcd. C₂₈H₃₅O₄: [M+H]⁺ 435.2530; found: [M+H]⁺ 435.2525.

R,9S,13S,14S,17S)-3,17-Dimethoxy-13-methyl-2-(*p*-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene tricarbonyl chromium (6).

To an oven-dried microwave 10 mL glass vial equipped with a round stirrer bar, the following reagents were added in this order: K₂CO₃ (172.5 mg, 1.25 mmol, 2.5 equiv), 1-AdCO₂H (45.0 mg, 0.250 mmol, 0.5 equiv), Ag₂CO₃ (70 mg, 0.25 mmol, 0.5 equiv), Pd(PPh₃)₄ (5 mol%, 28.9 mg, 0.010 mmol), complex 1u (218 mg, 0.50 mmol, 1.0 equiv) and 4-iodotoluene (163.5 mg, 0.75 mmol, 1.5 equiv). PhCH₃ (0.3 mL, 1M) and 2,2,6,6-tetramethylpiperidine (170 µL, 1 mmol, 2.0 equiv) were added and the glass vial was sealed with a disposable microwave cap. The resulting mixture was stirred for 27 h at 60 $^{\circ}$ C. The reaction was then cooled down and Et₂O (5 mL) was added and the suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating in vacuo. Purification via flash chromatography column on silica gel (Hexane:Et₂O 9:1) provided the title product 6 in 89% yield (234.1 mg, 0.445 mmol) as an equimolar mixture of facial diastereoisomers . ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) = 7.48 (d, J = 7.6 Hz, 2H, diast. A), 7.44 (d, J = 7.6 Hz, 2H, diast. B), 7.23-7.16 (m, 2H + 2H, diast. A+B), 6.18 (s, 1H, diast. A), 6.06 (s, 1H, diast. B), 5.50 (s, 1H + 1H, diast. A+B), 3.83 (s, 3H, diast. A), 3.76 (s, 3H, diast. B), 3.29 (s, 3H + 3H, diast. A+B), 3.20-2.71 (m, 2H, diast. A+B), 2.35 (s, 3H + 3H, diast. A+B), 2.32-1.80 (m, 7H, diast. A+B), 1.80-1.21 (21H, diast. A+B), 1.00-0.81 (m, 2H, diast. A+B), 0.82 (s, 3H, diast. A), 0.79 (s, 3H, diast. B). ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) = 236.6 (diast. A), 236.0 (diast. B), 143.5 (diast. A), 143.0 (diast. B), 139.5 (diast. A), 139.4 (diast. B). 133.5 (diast. A+B), 131.9 (diast. B), 131.8 (diast. A), 130.1 (diast. A+B), 114.0 (diast. B), 113.6 (diast. A), 108.9 (diast. A), 106.4 (diast. B), 102.4 (diast. B), 101.2 (diast. A), 99.4 (diast. B), 98.8 (diast. A), 91.8 (diast. B), 91.7 (diast. A), 77.6 (diast. B), 77.5 (diast. A), 58.6 (diast. A), 57.3 (diast. B), 51.3 (diast. A+B), 51.0 (diast. A+B), 45.0 (diast. B), 44.7 (diast. B), 44.6 (diast. A), 44.0 (diast. A), 40.2 (diast. B), 39.4 (diast. A), 39.1 (diast. A), 39.0 (diast. B), 31.3 (diast. A+B), 29.0 (diast. A), 29.0 (diast. B), 28.0 (diast. A), 27.9 (diast. B), 27.4 (diast. A+B), 24.5 (diast. A), 24.3 (diast. B), 21.9 (diast. A+B), 12.7 (diast. A), 12.6 (diast. B). 142.7, 119.1, 110.8, 95.5, 94.1, 82.4, 80.6, 66.4, 33.2, 32.4, 25.6, 16.1 IR: v = 2935, 1943, 1853, 1700, 1474, 1245, 1102 cm⁻¹. Mp: 104-106 °C. HRMS EI+ *m*/*z* calcd. C₃₀H₃₅O₅Cr : [M+H]⁺ 527.1890; found: [M+H]⁺ 527.1873.

(8R,9S,13S,14S,17S)-13-Methyl-2-(*p*-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthrene-3,17-diol (5)⁷.

In an oven-dried microwave 10 mL glass vial containing complex **6** (mixture of facial diastereoisomers, 104 mg, 0.2 mmol), AcOH (2 mL) was slowly added with moderate stirring. After 5 min, MnO₂ (90 mg, 0.6 mmol, 3 equiv) was added in small portions and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo*. To the crude mixture AlCl₃ (133 mg, 1.0 mmol) was added and the flask placed under Ar atmosphere. 1,2-ethandithiol (2 mL) was added and the mixture stirred for 1 h at RT. The reaction was then concentrated *in vacuo*. Purification via flash chromatography column (gradient hexane/Et₂O 90:10 to 60:40) on silica gel provided the title product **5** as a white solid in 91% yield (68 mg, 0.181 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.36 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.16 (s, 1H), 6.72 (s, 1H), 5.14 (*br* s, 1H), 3.73 (t, *J* = 8.4 Hz, 1H), 2.98-2.80 (m, 2H), 2.41 (s, 3H), 2.35-2.09 (m, 3H), 1.98-1.85 (m, 2H), 1.80-1.14 (m, 9H), 0.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 150.4, 137.9, 137.5, 134.7, 132.9, 130.0, 129.1, 127.3, 125.7, 115.7, 82.1, 50.2, 44.1, 43.4, 39.0, 36.8, 30.7, 29.5, 27.4, 26.5, 23.3, 21.3, 11.2. IR: v = 3320, 3024, 2923, 1501, 906, 730 cm⁻¹. Mp: 154-156 °C. . HRMS EI+ *m*/*z* calcd. C₂₅H₃₁O₂: [M+H]⁺ 363.2310; found: [M+H]⁺ 363.2312.

(8R,9S,13S,14S,17S)-17-Methoxy-13-methyl-2-(p-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene $(7)^8$.

An oven-dried microwave 10 mL glass vial was charged with complex **6** (1:1 mixture of facial diastereoisomers, 104 mg, 0.2 mmol, 1.0 equiv) under Ar atmosphere. THF (2 mL) was added, followed by superhydride (1M in THF, 0.4 mL, 0.4 mmol, 2 equiv). The resulting solution was refluxed for 2 h and then cooled down in an ice bath. AcOH (2 mL) was slowly added with moderate stirring. After 5 min, MnO₂ (90 mg, 0.6 mmol, 3 equiv) was added in small portions and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo*. Purification via flash chromatography column (Hexane/Et₂O 90:10) on silica gel provided the required product **7** as colourless oil in 89% yield (64.1 mg, 0.178 mmol). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.54 (*br* s, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.36 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 1H), 3.41 (s, 3H), 3.35 (t, *J* =8.0 Hz, 1H), 2.98-2.90 (m, 2H), 2.49-2.27 (m, 5H), 2.18-2.04 (m, 2H), 1.80-1.20 (m, 9H), 0.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 140.8, 139.0, 138.7, 136.7, 135.7, 129.5, 127.1, 124.4, 124.2, 90.9, 58.0, 50.6, 44.7, 43.4, 38.6, 38.2, 29.4, 27.9, 27.4, 26.4, 23.2, 21.2, 11.7. IR: v = 3021, 2924, 1490, 1103, 976, 805 cm⁻¹. HRMS EI+ *m*/z calcd. C₂₆H₃₃O: [M+H]⁺ 361.2526; found: [M+H]⁺ 361.2526.

(8R,13S,14S,17S)-3,17-Dimethoxy-6-(4-methoxyphenyl)-13-methyl-2-(*p*-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (8)⁹.

An oven-dried microwave 10 mL glass vial was charged with $PdCl_2(PPh_3)_2$ (3.5 mg, 0.006 mmol, 3 mol %), placed under vacuum and refilled with an Ar balloon. Then THF (1 mL), LiHMDS (1.0 M in THF/ethylbenzene, 0.32 mmol, 1.6 equiv) and finally 4-bromoanisole (60 mg, 0.32 mmol, 1.6 equiv) were added. The resulting mixture was stirred for 10 min and was then transferred by syringe to an oven-dried microwave 10 mL glass vial under Ar, containing complex **6** (mixture of facial diastereoisomers, 104 mg, 0.2 mmol, 1.0 equiv). The orange suspension was stirred for 16 h at 60 °C and then quenched with AcOH (1 mL). MnO₂ (90 mg, 0.6 mmol, 3 equiv) was added in small portions and the black suspension was vigorously stirred for 30 min. The suspension was then loaded on a short silica plug (2 x 4 cm) and eluted with Et₂O (30 mL) before concentrating *in vacuo*. Analysis on the crude ¹H NMR showed the product as a mixture of diastereoisomers **8a**: **8b** in a 3:1 ratio (42% yield for **8a** and 15% yield for **8b**). Purification via flash chromatography (gradient hexane/Et₂O 98:2 to 95:5) afforded a pure sample of the main diastereoisomer **8a** in order to assign its absolute configuration. ¹H NMR, ¹³C NMR, HSQC and NOESY analysis allowed the tentative assignment of the benzylic configuration for compound **8a** as shown below.

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.45 (d, *J* = 7.5 Hz, 2H), 7.31 (s, 1H), 7.22 (d, *J* = 7.6, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 7.9 Hz, 2H), 6.52 (s, 1H), 4.27-4.21 (m, 1H), 3.81 (s, 3H), 3.62 (s, 3H), 3.36 (s, 3H), 3.29 (t, *J* = 8.2 Hz, 1H), 2.40 (s, 3H), 2.37-2.20 (m, 2H), 2.12-1.92 (m, 2H), 1.90-1.75 (m, 2H), 1.68-1.32 (m, 6H), 1.32-1.00 (m, 2H), 0.72 (s, 3H), 0.7

3H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 157.7, 154.6, 140.4, 138.8, 136.5, 136.0, 133.6, 129.9, 129.5, 128.9, 128.8, 127.8, 113.6, 113.2, 90.9, 58.0, 55.8, 55.3, 50.1, 44.4, 43.8, 43.6, 38.3, 36.3, 33.0, 27.8, 26.7, 23.0, 21.3, 11.8. IR: v = 2930, 2847, 1609, 1508, 977, 832 cm⁻¹. HRMS EI+ *m/z* calcd. C₃₄H₄₁O₃: [M+H]⁺ 497.3050; found: [M+H]⁺ 497.3050.

References

- ¹Khenkin, M. A.; Weiner, L.; Wang, Y.; Neumann, R. J. Am. Chem. Soc., 2001, 123, 8531.
- ² Morgan, D. L.; Martinez-Castro, N.; Storey, R. F. *Macromolecules*, **2010**, *43*, 8274.
- ³ Harrowven, D. C.; Lucas, M. C.; Howes, P. D. *Tetrahedron*, **2001**, *57*, 791.
- ⁴ Kingston, Jesudoss, V.; Verkade, J. G. J. Org. Chem. 2007, 72, 2816.
- ⁵ Jacquesy, J.-C.; Jounnetaud, M.-P. Bull. Chem. Soc. Fr. 1980, 2, 295.
- ⁶ Wang, B.; Qin, L.; Neumann, K.; ShriHarsha, U.; Cerny, L. R.; DiMagno Org. Lett. 2010, 12, 3352.
- ⁷ Inaba, T.; Umezawa, Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Ogura, K. J. Org. Chem. **1980**, 45, 4275.
- ⁸ Djukic, J. P.; Rose-Munch, Rose, E. J. Am. Chem. Soc. 1993, 115, 6434.
- ⁹ McGrew, G. I.; Stanciu, C.; Zhang, J.; Carroll, P. J.; Spencer, D. D.; Walsh, P. J. Angew. Chem. Int. Ed. 2012, 51, 11510.

¹H and ¹³C NMR spectra of arene chromium complexes 1 and arylation products 3-6.

(Ethoxymethoxy)benzene tricarbonyl chromium (1a).

Anisole tricarbonyl chromium (1b).

(2,2,2-Trifluoroethoxy)benzene tricarbonyl chromium (1c).

ropoxybenzene tricarbonyl chromium (1d).

4-Methylanisole tricarbonyl chromium (1e).

1-Isopropoxy-4-methylbenzene tricarbonyl chromium (1f).

Ċr(CO)₃

1-cyclohexyl-4-isopropoxybenzene tricarbonyl chromium (1g).

Су Ċr(CO)₃ 1g

1-(*Tert*-butyl)-4-(ethoxymethoxy)benzene tricarbonyl chromium (1h).

3-Methylanisole tricarbonyl chromium (1i).

6 Ċr(CO)₃ 1i

1-(Ethoxymethoxy)-3-methylbenzene tricarbonyl chromium (1j).

4-Methoxy-1,2-dimehtylbenzene tricarbonyl chromium (1k)

Methyl 4-methoxy-2-methylbenzoate tricarbonyl chromium (11)

2,4-Dimethoxy-1-methylbenzene tricarbonyl chromium (1m).

Methyl 2,4-dimethoxylbenzoate -1-methylbenzene tricarbonyl chromium (1n).

Tert-butyl(2,4-dimethoxybenzyl)oxy)dimethylsilane tricarbonyl chromium (10).

2-Methoxy-1,2,3,4-tetrahydronaphthalene chromium tricarbonyl (1p).

6-Methoxy-1,2,3,4-tetrahydronaphthalene-5,7- d_2 chromium tricarbonyl (1p-D).

1-Methoxy-2-methylbenzene chromium tricarbonyl (1r).

2,3-Dihydrobenzofuran chromium tricarbonyl (1s).

1,4-Diisopropyl-2-methylbenzene tricarbonyl chromium (1t).

2-(Ethoxymethoxy)-4'-methyl-1,1'-biphenyl (3aa)

2-Methoxy-4'-methyl-1,1'-biphenyl (3ba).

S58

2-Isopropoxy-4'-methyl-1,1'-biphenyl (3da).

2-Methoxy-4',5-dimethyl-1,1'-biphenyl (3ea).

5-Cyclohexyl-2-isopropoxy-4'-methyl-1,1'-biphenyl (3ga).

5-(Tert-butyl)-2-(ethoxymethoxy)-4'-methyl-1,1'-biphenyl (3ha).

2-Methoxy-4,4'-dimethyl-1,1'-biphenyl (3ia).

2-(Ethoxymethoxy)-4,4'-dimethyl-1,1'-biphenyl (3ja).

2-Methoxy-4,4',5-trimethyl-1,1'-biphenyl (3ka)

Methyl 6-methoxy-4,4'-dimethyl-[1,1'-biphenyl]-3-carboxylate (3la).

2,4-Dimethoxy-4',5-dimethyl-1,1'-biphenyl (3ma).

S71

2-Methoxy-3,4'-dimethyl-1,1'-biphenyl (3ra).

7-(p-Tolyl)-2,3-dihydrobenzofuran (3sa).

2,5-Diisopropoxy-4,4'-dimethyl-1,1'-biphenyl (3ta).

2,4'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kb).

4'-Fluoro-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3kd).

4'-Chloro-2-methoxy-4,5-dimethyl-1,1'-biphenyl (3ke).

S80

2-Methoxy-4,5-dimethyl-1,1':4',1''-terphenyl (3kg).

1-(2'-methoxy-4',5'-dimethyl-[1,1'-biphenyl]-4-yl)ethanone (3ki).

2,3'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kk).

Methyl 2'-methoxy- 4',5'-dimethyl-[1,1'-biphenyl]-3-carboxylate (3kl)

2,2'-Dimethoxy-4,5-dimethyl-1,1'-biphenyl (3kn).

(8*R*,9*S*,13*S*,14*S*,17*S*)-3,17-Dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[*a*]phenanthrene chromium tricarbonyl (1u).

(8R,9S,13S,14S,17S)-3,17-Dimethoxy-2-(4-methoxyphenyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (3ub).

(8R,9S,13S,14S,17S)-2-(4-Bromophenyl)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (3uf).

Methyl 4-((8R,9S,13S,14S,17S)-3,17-dimethoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-2-yl)benzoate (3uh).

(8R,9S,13S,14S,17S)-3,17-Dimethoxy-13-methyl-2-(*p*-tolyl)-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthrene tricarbonyl chromium (6).

(8R,9S,13S,14S,17S)-13-Methyl-2-(p-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (5).

(8R,9S,13S,14S,17S)-17-Methoxy-13-methyl-2-(p-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (7).

(6S,8R,9S,13S,14S,17S)-3,17-dimethoxy-6-(4-methoxyphenyl)-13-methyl-2-(p-tolyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (8a).

COSY and HSQC of 8a

S99

