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ABSTRACT Three short protein sequences have been
guided by computer to folds resembling their crystal struc-
tures. Initially, peptide fragment conformations ranging in size
from 9 to 25 residues were selected from a database of known
protein structures. A fragment was selected if it was compatible
with a segment of the sequence to be folded, as judged by
three-dimensional profile scores. By king the selected frag-
ment conformations together, hundreds oftrial structures were
generated of the same length and sequence as the protein to be
folded. These starting trial structures were then improved by
an evolutionary algorithm. Selection pressure for improving
the structures was provided by an energy function that was
desined to guide the conformational search procedure toward
the correct structure. We find that by evolution of only 400
structures for fewer than 1400 generations, the overall fold of
some small helical proteins can be computed from the sequence,
with deviations from observed structures of 2.5-4.0 A for Ca
atoms.

In protein folding by computer, it is not possible to exhaus-
tively test all possible protein conformations because of the
huge number of structures a protein chain can adopt (1).
Consequently, some sort of directed search to the correct
structure is required. We employ two strategies to direct the
search of conformation space. First, we build trial structures
using fragment conformations selected from a database of
known protein structures. Because local conformations are
restricted by these initial fragment selections, the number of
possible conformations is reduced. The second strategy is to
design an energy function that decreases gradually as the true
conformation is approached, because an energy function that
maintains a gradient in the direction of the correct confor-
mation can in essence direct the search of conformation
space (Fig. 1). This can be appreciated by considering an
alternative potential energy function that is flat everywhere
except at the true conformation. With a flat energy function,
an exhaustive search of conformation space would be re-
quired since the energy provides no information about how
close the conformation is to the true structure. We describe
here a method to generate a guiding energy function.

METHODS
Extracting Compatible Fragments from a Structure Data-

base. We built the initial trial structures for later evolution
from a mixture of small fixed-length (9 residues) and longer
variable-length (15-25 residues) fragments, as shown in Fig.
2A. These fragments were extracted from a database of
known protein structures by two enrichment procedures
based on the three-dimensional (3D) profile method ofBowie
et al. (2), which assesses the compatibility of a sequence for
a structure. In the 3D profile method, each residue receives

a score according to how well it fits its environment in the
structure. For the present application, we determine the
score by replacing a sequence segment in a protein ofknown
structure with the sequence of the protein to be folded.
Short Fragments. For fixed-length fragments, 9-residue

segments were extracted from the sequence to be folded and
scored for compatibility with all possible 9-residue environ-
ment patterns in a database of protein structures. Proteins in
this database that are homologous [as defined by Sander and
Schneider (3)] to the protein to be folded were excluded. The
15 most compatible fragments were selected and the confor-
mations were stored. This procedure indeed enriches for
fragments that are more likely to be correct. Only 17% of
random 9-residue fragments in a database of 71 nonhomolo-
gous proteins were found to be within a 1.75-A distance
matrix error (DME) (4) on Ca atoms, whereas in the enriched
pools, 31% were within a 1.75-A DME.
Long Fragments. Up to 100 longer fragments ranging in size

from 15 to 25 residues were selected by finding the best
alignments, without gaps, of the sequence to be folded with
the environment patterns of structures in a structure database
(2). Fragments longer than 25 residues were not found to be
useful. Initially, 500 top-scoring alignments were taken from
the full Brookhaven Protein Data Bank (5) of structures,
excluding only those homologous to the protein to be folded
[by the criteria ofSander and Schneider (3)]. In a second step,
fragments homologous to higher scoring fiagments were
removed from the list, and we saved a maximum of 100
top-scoring nonhomologous fragments. Again this procedure
enriches for fragments that are more likely to be correct. In
the length range of 15-19 residues, 12% of fragments ex-
tracted by this procedure are within a DME of 2 A and 28%
are within a DME of 3 A, compared with 4% within a DME
of 2 A and 17% within a DME of 3 A for random fragments
of this length. In the length range of 20-25 residues, 3% of
extracted fiagments are within a DME of 2 A and 12% are
within a DME of 3 A, compared with 1% within a DME of 2
A and 4% within a DME of 3 A for random fragments of this
length.

Building a Population of Trial Structures from the Selected
Fragments. Hundreds of initial trial structures, with confor-
mations described by dihedral angles, were built from the
enriched pools of 9-residue fragments and the list ofup to 100
longer fragments by the following procedure. First, confor-
mations were built from the N terminus to the end using
nonoverlapping 9-residue fragments. Starting at the N ter-
minus, a fiagment was randomly selected for residues 1-9
from the fragment pool for this segment of sequence. Next,
a fiagment was randomly selected for residues 10-18, then
residues 19-27, and so forth until the C terminus. The
dihedral angles from these fragments became the dihedral
angles describing the trial structure. If the sequence length
was not an exact multiple of 9, the end was filled in with a
smaller fragment. No effort was made to adjust the dihedral

Abbreviations: 3D, three dimensional; DME, distance matrix error.
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FIG. 1. Three hypothetical one-dimensional potential functions
for the folding of a protein, illustrating the computational problems
in protein folding. The flat potential has a minimum at the true
structure but is not helpful in finding the minimum. This defect is
removed in the guided potential. The multiple-minimum potential is
more realistic and introduces the problem of barriers between local
minima and the true structure. The evolutionary algorithm is capable
of overcoming these local barriers.

angles at the fragment joints. This procedure was repeated
with other random selections to build up the other trial
structures. For half the trial structures, the dihedral angles
were overwritten by fiagments offset by 4 residues. Thus,
residues 1-4 were unaffected, but the remaining residues
were built from fragments for residues 5-14, residues 15-23,
etc. At this point then, halfthe trial structures were built from
nonoverlapping 9-residue fragments starting at the N termi-
nus and halfwere built mostly from nonoverlapping 9-residue
fragments starting a residue 5. Next, for each trial structure,
two nonoverlapping large fragments were randomly selected
and the conformations for those regions were replaced by the
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conformation of the large fragments. Thus, up to 50 residues
could possess the dihedral angles of these large fragments.
This starting population of initial trial structures was then
optimized using an evolutionary algorithm.
The Evolutionary Algorithm. The energy (see below) of the

population was minimized with an evolutionary algorithm (6).
Others have recently applied the genetic algorithm to prob-
lems in protein folding (7-10). The algorithm is outlined in
Fig. 2B. Each trial structure of a given protein was encoded
as a set of dihedral angles. An initial population of hundreds
of parental trial structures was generated by linking frag-
ments of known protein structures, as described above. In
the analogy to genetics, each dihedral angle can be consid-
ered as a gene and the set of dihedral angles that make up a
trial structure can be considered as a chromosome. Each
parental chromosome then generated one child, by duplica-
tion, which was then subject to mutations and recombina-
tions. A mutation was a change of a dihedral angle that could
either be a random selection from a database of rotamers or
a slight adjustment of its current angle. In recombination, a
segment of a child's chromosome was replaced by the
dihedral angles of the same sequence segment from another
randomly chosen parent. To preserve the local fragment
conformations for enough generations to be tested in a
variety of tertiary structure -environments, mutations, and
recombination end points had a higher probability at the
fragment junctions.
A new population of parental and child trial structures was

thereby generated that was twice as big as the starting
population and with all children being different from their
parents. The energy score, for each trial structure in the new
population, was determined and then each trial structure was
made to compete with 10 randomly chosen trial structures in
the population. A win was assigned to the trial structure with
the lower energy score. The 50%o of the trial structures with
the most wins survived to become the next population and the
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FIG. 2. Evolutionary algorithm. (A) The initial stage in which promising fiagments are selected. (B) The stage ofevolutionary cycling in which
conformations are replicated with mutations and recombinations and the fittest is selected for the next cycle.
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Table 1. Fitness function for a protein structure
Set 1 Set2 Set 3

Property a W X W X W X

Profile score 0.27 0.0 0.0 0.0 0.0 1.53 0.90
Hydrophobicity contrast C 0.31 7.79 0.84 9.97 0.59 3.08 1.44
Total accessible surface area 0.06 3.72 1.6 1.67 1.52 5.13 1.11
Overlap penalty I 0.05 0.64 1.26 2.38 0.36 3.35 0.45
Overlap penalty II 0.05 3.39 0.87 1.45 1.19 2.04 1.03
Fatness 0.13 3.57 0.97 0.95 1.60 0.0 0.0

Fitness function, S = 1: 1 Wil(Pil(P,) - 1.0)/c4li, where P,/(P,) is the ratio ofthe ith property for the current conformation
Pito its target value (PI), determined from a database ofknown protein structures. The value ofa gives the standard deviation
of property i in the database. The three sets give the optimal values for the weight Wi and exponent Xi determined from
three sets of 63-residue conformations having the 434 repressor sequences. The profile score is how well the environment
at each side chain matches the environment observed for that side chain in known protein structures (2). Target value for
profile score = 10-3.0674+1.0847.log M), where M is the molecular weight. Hydrophobicity contrast C is a global measure of
segregation of polar groups and apolar groups in a protein structure (12). C = 1i Aumri - (Ao)(r), where Aor is the atomic
solvation parameter of an atom i at a distance r from the center of mass. Target value = -4.3148 x 10-4M - 0.47444. The
total accessible surface area is from ref. 13. Target value = 0(0.38137+0.83203.1 M). Overlap penalty I is the number of atom
pairs within 50% of the sum of van der Waals radii. Target value = 17.123 + 0.14286-M. Overlap penalty II is the number
of atom pairs between 50%o and 80%o of the sum of van der Waals radii. Target value = -4.8257 + 0.21560-M. Fatness is
the ratio of longest to shortest axis of inertial ellipsoid for the structure (14). Target value = 1.54.

remaining trial structures were extinguished. A new popula-
tion was thereby generated that was the same size as the first
but contained trial structures that were fitter on average than
the members of the parental population, as judged by the
energy score. Because there is a tendency for a child to
resemble its parent, a population can quickly become dom-
inated by a single highly fit conformation and its offspring. To
minimize this effect, we incorporated a sharing procedure as

described by Palmer and Smith (11). The cycle of duplication
with variation and selection was repeated until the lowest
energy score did not improve for a preset number of gener-
ations. Details of the evolutionary algorithm are accessible
via anonymous file transfer protocol (FfrP).*
The Energy Function. The potential energy or fitness

functions of this paper are a sum of six terms (Table 1), each
of which describes a global property of a protein chain.
Notice that if the value of property i for a conformation, Pi,
exactly equals its target value, (Pi), the ratio Pi/(P,) equals 1
and that property contributes nothing to the overall score.

However, if the value of property i deviates from its target
value, its contribution to the overall score is positive and
depends on how uniform that property is for known protein
structures, reflected in ai, the weight, Wi, and the exponent,
Xi, given to that property.

Weighting the Fitness Function to Drive the Evolutionary
Search Toward the Correct Structure. We sought values for
Wi andXi that give an energy score, S, for a trial conformation
that increases as the trial structure diverges from the true
structure. A useful measure of the divergence of a trial
structure from the true conformation is DME. In fact, we
found that if the energy is simply taken as the DME from a
known structure, our evolutionary algorithm readily folds a

protein to that structure. Thus we sought values of Wi and Xi
that give the best correlation between the score S and the
DME for the N-terminal domain of 434 repressor, a 63-
residue helical protein (15).
Groups of conformations possessing the 434 repressor

sequence were generated by running the evolutionary algo-
rithm described above, but minimizing the DME of the
population. Representative conformations were selected
throughout the evolution. Because good conformations tend
to increase their proportion of the population exponentially,
we selected an exponentially decreasing number of confor-
mations as the generations proceeded. Three separate sets of
conformations were generated. The total conformations in

*fourier.mbi.ucla.edu (128.97.39.21), directory pub/evolution.

each group between 0- and 10-A DME were 1705, 1505, and
1526.
Weights and powers for each property were adjusted

separately for each group, also by means of an evolutionary
algorithm, to fit the line: S = 10-DME. The quantity mini-
mized was RMSDev-Ail + 10RMSDev-Min. RMSDev-AlI is
the rms deviation of all data points to the line. RMSDev-Min
is the rms deviation of the lowest score values in each 0.5-A
DME bin. Thus, deviations below the line were penalized
more heavily than deviations above the line. This was done
to make it more difficult for conformations to settle into a
good local minimum far from the correct conformation. Sets
of weights and powers where the correct structure was not at
the global minimum were eliminated from the population.
The three resulting sets of weights and exponents are given
in Table 1.
The different sets of weights and exponents emphasize

different parameters. For example, in two of the sets, the
profile score contributes nothing to the overall fitness score,
and in one, the fatness measure contributes nothing. While
any of these sets of weights and exponents could be used
separately, we found the most effective scoring function was
to determine three scores for each conformation using the
three sets of weights and exponents and then to assign the
highest of the three as the score for that conformation. By

U)~~~~~~~~~~~~~~~~~~~~M

DME

FIG. 3. Plot of the energy or fitness score, S. vs. DME relative
to 434 repressor for a set of 63-residue conformations. The weights
were not optimized on the set of conformations shown here.
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analogy to an evolutionary selection, we test the ability ofthe
organism (the trial structure) to survive in three environ-
ments. Fig. 3 displays a good correlation between DME and
S, suggesting that minimizing S by varying the conformation
of a small helical protein will tend to drive the conformation
toward the true structure. Details of the energy function
generation are accessible via anonymous FITP.*
The Structure Databases. The databases used are available

via anonymous FTP.*

RESULTS
Folding 434 Repressor. As a first test of the algorithm, we

attempted to fold 434 repressor, although our results with this
protein are biased by information from the crystal structure
that we had used to optimize our empirical energy function S.
By starting from a population of400 conformations generated
from randomly assembled fragments (Fig. 2A), the popula-
tion was optimized (Fig. 2B) until 200 generations passed
without an improvement in the energy of the top scoring
conformation. The evolutionary algorithm dropped the en-
ergy S of the top conformation in the population from >50 in
the first generation to final values of 13.6, 10.4, and 10.1 for
the three runs. The energy of the crystal structure of 434
repressor is 13.2. The structure in the three final populations
that was closest to the crystal structure of 434 repressor is
shown in Fig. 4. For the first and third runs, the best
structures do indeed fold into structures that closely resemble
the true structure, both having DMEs of only 3.0 A on Ca
positions.

In none of the three attempts to fold 434 repressor was the
best conformation the one with the lowest energy. The ranks
of the three best conformations were 59, 400, and 220 out of
400 in the population. Moreover, the lowest energy confor-
mations in the final populations had relatively poor DMEs of
4.0, 5.4, and 5.1 A. Thus, our energy function cannot
absolutely distinguish between good and poorer structures.

FIG. 4. Best conformations of 434 repressor, as judged by the
DME measure ofcoordinate error, in three folding attempts. The true
crystal structure is shown in darker grey in the upper left corner. The
best conformation for run 1 is shown in the upper right corner (DME
= 3.0 A; S = 14.7; rank = 59), for run 2 it is shown in the lower left
corner (DME = 4.5 A; S = 27.4; rank = 400), and for run 3 it is shown
in the lower right corner (DME = 3.0 A; S = 11.9; rank = 220). Runs
1, 2, and 3 converged after 813, 718, and 940 generations, respec-
tively. The figure was made using the program MOLSCRIPT (16).

Low-energy wells distant from the true structure clearly exist
and are accessible to our conformational search. Neverthe-
less, our procedure is capable offinding the correct region of
conformation space with high probability. Out of the 1200
structures in the three final populations, more than one-third
are within a 4.0-A DME of the correct structure. Moreover,
these 1200 structures were arrived at after evaluating fewer
than 1 million conformations. For comparison, we generated
1 million 434 repressor conformations by using dihedral
angles selected at random from a database and the best
conformation obtained had a DME of 4.4 A. Given the huge
number of possible conformations a 63-residue protein could
adopt, we have achieved an enormous enrichment in struc-
tures that resemble the true structure.

Engrailed and Protein A Folding Attempts. We next tested
the algorithm on two other small proteins: the 57-residue
engrailed homeodomain (17) and a 50-residue fragment ofthe
B domain of protein A (residues 8-57) (18). Both proteins
represent favorable cases because both are small, largely
helical, single-domain proteins lacking both disulfide bonds
and metals. These tests are otherwise unbiased by knowledge
of the structure. The evolutionary algorithm was provided
with no information about the true structure, other than its
amino acid sequence, and no parameters were changed from
the 434 repressor folding attempts.
The crystal structure of the engrailed homeoWomain con-

sists of a three-helix protein core and an N-terminal arm that
extends from the main body ofthe protein and inserts into the
minor groove of the DNA to which it is bound (17). Because
this arm is not packed against the rest of the protein, it is
likely that the arm adopts a different structure in solution and
may well be disordered. Although we kept the arm sequence
in our folding attempts, it was almost invariably in a very
different orientation than in the crystal structure, which
resulted in overall poor DME measures even though the
remainder ofthe protein was folded correctly. Consequently,
we describe the results with reference to the core region only.

FIG. 5. Best conformations ofengrailed homeodomain, asjudged
by the DME measure of coordinate error, in three folding attempts.
Only residues 10-59 are shown, removing N-terminal arm. The true
crystal structure is shown in darker grey in the upper left corner. The
best conformation for run 1 is shown in the upper right corner (DME
= 2.3 A; S = 8.1; rank = 7), for run 2 it is shown in the lower left
corner (DME = 3.3 A; S = 17.1; rank = 91), and for run 3 it is shown
in the lower right corner (DME = 3.4 A; S = 16.8; rank = 378). Runs
1, 2, and 3 converged after 1375, 556, and 668 generations, respec-
tively. The figure was made using the program MOLSCRIPT (16).

Biophysics: Bowie and Eisenberg
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FIG. 6. Best conformations of the B domain of protein A as
judged by the DME measure of coordinate error in three folding
attempts. The true crystal structure is shown in darker grey in the
upper left corner. The best conformation for run 1 is shown in the
upper right corner (DME = 3.2 A; S = 11.2; rank = 100), for run 2
it is shown in the lower left corner (DME = 3.0 A; S = 11.9; rank =
125), and for run 3 it is shown in the lower right corner (DME = 3.8
A; S = 7.4; rank = 4). Runs 1, 2, and 3 converged after 1057, 781,
and 1294 generations, respectively. The structure shown for run 1 is
not necessarily the best structure in the population, but DME is not
good at distinguishing the incorrect topology shown, from the correct
topology. The figure was made using the program MOLSCRIPr (16).

The best structures in the final population for three folding
attempts are shown in Fig. 5. These structures had DMEs for
the 50-residue core region of 2.3 A, 3.3 A, and 3.4 A and ranks
of 7, 91, and 378 in the final populations of 400. In each case,
the basic fold is correct, including most of the secondary
structure, but the third long helix is broken and distorted. We
note that better-formed structures with intact third helices did
appear earlier in several of these runs, but the distorted
helices won out in the long run. This again shows that the
energy function can rapidly focus the search in the correct
area of conformation space but does not always converge on
the correct structure.
The best structures from three attempts to fold the B-do-

main fragment of protein A are shown in Fig. 6. The best
structures shown had DMEs of 3.2, 3.0, and 3.8 A and ranks
of 100, 125, and 4 in the final populations. In each case, the
packing of the first and second helix is very similar to the
crystal structure, but the position and length of the third helix
are quite variable. In the best structure from the first run, a

three-helix bundle forms, but the third helix is actually on the
wrong side of an approximate plane formed by the first and
second helices. Nevertheless, the correct overall fold was

obtained in the second two attempts. It is interesting to note
that in the crystal structure of this same domain, the third
helix is actually in an extended conformation (19). While this
structural change is thought to be due to crystal packing
forces, it also suggests that this region of the structure is
particularly malleable.

Conclusion. In three test cases, our algorithm arrives at
structures close to the correct structure among a small
collection of possible structures. Our approach does have a

number of obvious limitations, however. First, although our

energy function is capable of moving the search of confor-

mation space into fruitful areas, it is not able to drive the
search all the way to the final structure because some poor
conformations have low-energy scores. Moreover, the en-
ergy function is currently applicable only to small helical
proteins since it includes no properties, such as a long-range
hydrogen-bonding term, that would favor /-sheet formation.
Nevertheless, we have described an approach by which
properties can be added that might improve the stringency
and increase the generality of the energy function. Second,
while the size of conformation space is greatly reduced by
restricting local conformations to ones that have been se-
lected from known structures, if the correct fragment con-
formation does not exist in some structure in the database, we
have a diminished chance of evolving to the correct confor-
mation.

Despite these limitations, we have been able to fold a few
small helical proteins to conformations close to their true
structures after evaluating fewer than half a million confor-
mations-a tiny fraction of all the structures these protein
chains can adopt. This limited success suggests that it may be
possible to direct a search of conformation space, without
resorting to explicit descriptions of the folding pathway.
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