
Supplementary Materials
Hi-Corrector: A fast, scalable and memory-efficient package for normalizing

large-scale Hi-C data

Wenyuan Li, Ke Gong, Qingjiao Li, Frank Alber* and Xianghong Jasmine Zhou*

1 Molecular and Computational Biology Program, Department of Biological Sciences, University
of Southern California, Los Angeles, CA 90089, USA.

* Correspondence email: alber@usc.edu or xjzhou@usc.edu

This supplementary materials provide a detailed description of the algorithms and experiments.

Memory-Efficient Sequential and Parallel Algorithms
Given an observed chromosome contact frequency matrix O = (Oij)N´N

over N genomic regions, the IC

method eliminates biases so that all genomic regions have equal visibility (Imakaev et al., 2012). We
briefly summarize the iterative correction procedure in Figure S1. After the bias vector

b = (b

i
)

N´1
is

obtained, the corrected contact frequency matrix can be calculated as Tij = Oij / (bibj) . However, this

implementation of the original IC algorithm needs to keep the whole matrix O in memory, in order to
alternately update b and O.

To make this algorithm memory-efficient, we designed a strategy of breaking the matrix O into K equal
partitions of complete rows and loading only one partition into memory at any given time. Therefore, the
memory requirement can be very low when K is large. This strategy adapts the IC algorithm by adding
two steps: (i) loading the k-th matrix partition Ok into memory and (ii) updating this partition with the
last updated bias vector b. The new Memory Efficient Sequential algorithm (called IC-MES) works even
for the extreme case of K=N, where only one row is loaded each time. The extra running time is the data
loading time. Figure S2 shows the procedure of the IC-MES algorithm.

IC-MES is memory efficient, but it is still a sequential algorithm that runs on a single computing machine.
Therefore, it may be too slow when the machine has small memory. To normalize large Hi-C matrices in a
short time, we also designed a fast, scalable and Memory-Efficient Parallel algorithm (called IC-MEP) that
can maximally exploit the parallelism of the normalization problem and make use of many commonly
available computing resources.

In essence, the normalization problem is a data divisible task: a series of operations that can
independently work on separate partitions of the data. This problem is perfectly suited to the data-
parallel model in a distributed-memory computing environment such as a computer cluster, which
consists of K independent processors (or nodes) that are loosely or tightly connected in high-speed
networks and have limited local memory. We employed the manager-worker (or master-slave) parallel
programming paradigm. The manager task partitions the data into K blocks, then initiates K worker tasks
in different nodes; each worker task processes a single data block. The manager coordinates all workers
and synchronizes their calculations with updated bias vectors. The IC-MEP algorithm has very little
network messaging overhead, because no communication exists between workers. Therefore, it is
computationally efficient. Furthermore, in order for each worker to run its task on limited memory, we
also used the memory-saving strategy of the IC-MES algorithm. That is, each worker further partitions its

mailto:alber@usc.edu
mailto:xjzhou@usc.edu

assigned data block into a set of sub-blocks and
loads only one sub-block into memory at any given
time. Therefore, theoretically the IC-MEP algorithm
can work on any number of processors with any local memory capacity. Figure S3 details this parallel
paradigm and the memory-efficient computation steps in each worker.

Implementations
We used ANSI C to implement the two sequential algorithms IC and IC-MES, because this language

provides maximum control and efficiency over the memory used. We only used functions in the portable
C library, so the code is easily portable to any operating system. We implemented the parallel algorithm
IC-MEP using the popular Message Passing Interface (MPI), which is a highly standardized and portable
environment designed for solving large-scale scientific problems on distributed memory systems. MPI has
been widely implemented and installed in many types of distributed memory systems and even
supercomputers. Our C and MPI implementation is also highly portable and computationally efficient,
because we used only two of its most basic communication functions, MPI_Send and MPI_Recv, for
passing a very small amount of data among processes.

Results

We compared three algorithms (IC, IC-MES, and IC-MEP) on the TCC/Hi-C data of two human cell types:
GM12878 and hESC (Kalhor et al., 2012; Dixon et al., 2012). The whole genome is partitioned into the
equal-size regions (or bins); the bin size is the main indicator of Hi-C data resolution. In these

 Input: the matrix O, number of partitions K
 Output: the bias vector b
 Procedure:

1. Partition O into K blocks; each block contains the same number

of rows

2. Create one manager task and K worker tasks: each worker

performs the computation for a block, while the manager

coordinates all workers and synchronizes their computations

with the updated bias vector. Below is the parallel schema.

Memory used for each worker: N2/(KL) for a matrix sub-block Ol
and N/(KL) for a partition of the vector b.

Figure S3. Memory-efficient parallel algorithm for iterative correction

(IC-MEP).

Input: the matrix O, number of partitions K
 Output: the bias vector b
 Procedure:

1. Equally partition O into K blocks; each block contains

approximately N/K rows.

2. Initialize b = (bi)N´1
 to be a vector whose elements are all ones.

3. FOR each partition k from 1 to K

1) Load the k-th block of C (denoted Ok) into the memory

2) Update Ok: Ok(i,j) Ok(i,j)/(bi*bj), where Ok(i,j) is the element

Oij and i, jrows in the k-th block.

3) Compute a temporary row sum: ti, for irows in the k-th block

4) Update bi: bi bi*ti, for only irows in the k-th block

4. Repeat Step 3 for each partition in a limited number of iterations.

Memory used: N2/K for a matrix partition Ok, N for the vector b and N/K
for the temporary vector t

Figure S2. Memory-efficient sequential algorithm for iterative correction

(IC-MES).

 Input: the matrix O
 Output: the bias vector b
 Procedure: repeat the following steps in a limited number of iterations.

1. Initialize b = (bi)N´1
 to be a vector whose elements are all ones.

2. Perform the following steps in a limited number of iterations

1) Compute the additional bias vector t = (ti)N´1
based on O, where

ti is the element sum of the i-th row.

2) Update O: Oij Oij/(ti*tj) for all i,j=1,…N.

3) Update the bias vector b: bi bi*ti, for all i=1,…, N.

Memory used: N2 for the whole matrix O and 2N for two vectors b and t

Figure S1. Original iterative correction algorithm (IC).

experiments, we are interested in comparing the performance of normalizing contact data at the
resolutions of 20K bp and 10K bp per bin.

The scalability and memory efficiency of IC-MEP were tested with different numbers of processors and
memory sizes per processor. We used the high-performance computing (HPC) resource of the University
of Southern California, which is a distributed-memory computing environment. Each node has a dual
octocore (16 processors) Intel Xeon 2.4 GHz CPU and 128GB memory 1. We also used these computers to
run the sequential algorithm, IC-MES, on the single processor. The HPC system allows each job to limit the
size of the memory used, so we can easily simulate different amounts of available memory for the
memory efficiency tests.

In the experiment with 20K bp resolution data, the basic IC algorithm requires a minimum memory of

86GB. Using our algorithms IC-MES and IC-MEP, we can control the memory size for each processor to be
1GB or 4GB. The results are listed in Table S1. Although the basic IC algorithm can complete the
normalization in about half hour, it needs too much memory. IC-MES can run with just 4GB memory (a
common memory configuration in office computers) and complete the same work in reasonable time
(within 4 hours). IC-MEP can dramatically speed up the computation by using more processors (about 6
minutes using 48 processors), while using only 1GB of memory in each processor. Please note that (i) the
memory sizes reported here do not include memory used for system overhead such as the MPI
environment; and (ii) the running time is dependent on the file I/O speed and the MPI system’s efficiency.

For the 10K bp resolution data, none of the HPC computer nodes (with 128GB memory limit) can load

the full matrix (about 343GB) for the basic IC algorithm. Table S1 shows that IC-MES and IC-MEP can use
existing computing resources with common memory configurations to achieve the results with low
memory usage and as quickly as possible.

Table S1. Running time of three algorithms (IC, IC-MES and IC-MEP) on 10K and 20K bp resolution Hi-C data for
two human cell types, using different numbers of processors and amounts of memory. All algorithms were
terminated after 10 iterations for the purpose of this performance comparison, since each iteration has almost the
same running time. “Memory” includes only the memory allocated only for computation in each processor, not
system overhead. The running time format is “hours : minutes : seconds”.

 Algorithm IC IC-MES IC-MEP

20K bp data
(151825 bins)

#Processor 1 1 16 48
Memory 86GB 4GB 1GB 1GB

Time (gm12878) 0:36:50 3:58:14 0:19:50 0:6:38
Time (hESC) 0:35:01 3:49:18 0:19:48 0:6:47

10K bp data
(303640 bins)

#Processor 1 1 16 48
Memory 343GB 32GB 2GB 2GB

Time (gm12878) NA 47:27:32 4:50:03 0:26:02
Time (hESC) NA 37:26:15 4:49:27 0:26:09

References

Dixon,J.R. et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin
interactions. Nature, 485, 376–80.

Imakaev,M. et al. (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization.
Nat. Methods, 9, 999–1003.

1 http://hpcc.usc.edu/support/infrastructure/hpcc-computing-resource-overview/

Kalhor,R. et al. (2012) Genome architectures revealed by tethered chromosome conformation capture
and population-based modeling. Nat. Biotechnol., 30, 90–8.

