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This supplementary materials provide a detailed description of the algorithms and experiments. 

Memory-Efficient Sequential and Parallel Algorithms 
Given an observed chromosome contact frequency matrix O = (Oij )N´N

over N genomic regions, the IC 

method eliminates biases so that all genomic regions have equal visibility (Imakaev et al., 2012). We 
briefly summarize the iterative correction procedure in Figure S1. After the bias vector 

   
b = (b

i
)

N´1
is 

obtained, the corrected contact frequency matrix can be calculated as Tij = Oij / (bibj ) . However, this 

implementation of the original IC algorithm needs to keep the whole matrix O in memory, in order to 
alternately update b and O. 
 

To make this algorithm memory-efficient, we designed a strategy of breaking the matrix O into K equal 
partitions of complete rows and loading only one partition into memory at any given time. Therefore, the 
memory requirement can be very low when K is large. This strategy adapts the IC algorithm by adding 
two steps: (i) loading the k-th matrix partition Ok into memory and (ii) updating this partition with the 
last updated bias vector b. The new Memory Efficient Sequential algorithm (called IC-MES) works even 
for the extreme case of K=N, where only one row is loaded each time. The extra running time is the data 
loading time. Figure S2 shows the procedure of the IC-MES algorithm. 
 

IC-MES is memory efficient, but it is still a sequential algorithm that runs on a single computing machine. 
Therefore, it may be too slow when the machine has small memory. To normalize large Hi-C matrices in a 
short time, we also designed a fast, scalable and Memory-Efficient Parallel algorithm (called IC-MEP) that 
can maximally exploit the parallelism of the normalization problem and make use of many commonly 
available computing resources. 
 

In essence, the normalization problem is a data divisible task: a series of operations that can 
independently work on separate partitions of the data. This problem is perfectly suited to the data-
parallel model in a distributed-memory computing environment such as a computer cluster, which 
consists of K independent processors (or nodes) that are loosely or tightly connected in high-speed 
networks and have limited local memory. We employed the manager-worker (or master-slave) parallel 
programming paradigm. The manager task partitions the data into K blocks, then initiates K worker tasks 
in different nodes; each worker task processes a single data block. The manager coordinates all workers 
and synchronizes their calculations with updated bias vectors. The IC-MEP algorithm has very little 
network messaging overhead, because no communication exists between workers. Therefore, it is 
computationally efficient. Furthermore, in order for each worker to run its task on limited memory, we 
also used the memory-saving strategy of the IC-MES algorithm. That is, each worker further partitions its 
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assigned data block into a set of sub-blocks and 
loads only one sub-block into memory at any given 
time. Therefore, theoretically the IC-MEP algorithm 
can work on any number of processors with any local memory capacity. Figure S3 details this parallel 
paradigm and the memory-efficient computation steps in each worker. 

Implementations 
We used ANSI C to implement the two sequential algorithms IC and IC-MES, because this language 

provides maximum control and efficiency over the memory used. We only used functions in the portable 
C library, so the code is easily portable to any operating system. We implemented the parallel algorithm 
IC-MEP using the popular Message Passing Interface (MPI), which is a highly standardized and portable 
environment designed for solving large-scale scientific problems on distributed memory systems. MPI has 
been widely implemented and installed in many types of distributed memory systems and even 
supercomputers. Our C and MPI implementation is also highly portable and computationally efficient, 
because we used only two of its most basic communication functions, MPI_Send and MPI_Recv, for 
passing a very small amount of data among processes. 

Results 

We compared three algorithms (IC, IC-MES, and IC-MEP) on the TCC/Hi-C data of two human cell types: 
GM12878 and hESC (Kalhor et al., 2012; Dixon et al., 2012). The whole genome is partitioned into the 
equal-size regions (or bins); the bin size is the main indicator of Hi-C data resolution. In these 

 Input: the matrix O, number of partitions K 
 Output: the bias vector b 
 Procedure: 

1. Partition O into K blocks; each block contains the same number 

of rows 

2. Create one manager task and K worker tasks: each worker 

performs the computation for a block, while the manager 

coordinates all workers and synchronizes their computations 

with the updated bias vector. Below is the parallel schema. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Memory used for each worker: N2/(KL) for a matrix sub-block Ol 
and N/(KL) for a partition of the vector b. 

Figure S3.  Memory-efficient parallel algorithm for iterative correction 

(IC-MEP).  

Input: the matrix O, number of partitions K 
 Output: the bias vector b 
 Procedure: 

1. Equally partition O into K blocks; each block contains 

approximately N/K rows. 

2. Initialize b = (bi )N´1
 to be a vector whose elements are all ones. 

3. FOR each partition k from 1 to K 

1) Load the k-th block of C (denoted Ok) into the memory 

2) Update Ok: Ok(i,j)  Ok(i,j)/(bi*bj), where Ok(i,j) is the element 

Oij and i, jrows in the k-th block. 

3) Compute a temporary row sum: ti, for irows in the k-th block 

4) Update bi: bi  bi*ti, for only irows in the k-th block 

4. Repeat Step 3 for each partition in a limited number of iterations. 
 
Memory used: N2/K for a matrix partition Ok, N for the vector b and N/K 
for the temporary vector t 

Figure S2. Memory-efficient sequential algorithm for iterative correction 

(IC-MES). 

 

 Input: the matrix O 
 Output: the bias vector b 
 Procedure: repeat the following steps in a limited number of iterations. 

1. Initialize b = (bi )N´1
 to be a vector whose elements are all ones. 

2. Perform the following steps in a limited number of iterations 

1) Compute the additional bias vector t = (ti )N´1
based on O, where 

ti  is the element sum of the i-th row. 

2) Update O: Oij  Oij/(ti*tj) for all i,j=1,…N. 

3) Update the bias vector b: bi  bi*ti, for all i=1,…, N. 
 
Memory used: N2 for the whole matrix O and 2N for two vectors b and t 

Figure  S1. Original iterative correction algorithm (IC). 



experiments, we are interested in comparing the performance of normalizing contact data at the 
resolutions of 20K bp and 10K bp per bin. 
 

The scalability and memory efficiency of IC-MEP were tested with different numbers of processors and 
memory sizes per processor. We used the high-performance computing (HPC) resource of the University 
of Southern California, which is a distributed-memory computing environment. Each node has a dual 
octocore (16 processors) Intel Xeon 2.4 GHz CPU and 128GB memory 1. We also used these computers to 
run the sequential algorithm, IC-MES, on the single processor. The HPC system allows each job to limit the 
size of the memory used, so we can easily simulate different amounts of available memory for the 
memory efficiency tests. 

 
In the experiment with 20K bp resolution data, the basic IC algorithm requires a minimum memory of 

86GB. Using our algorithms IC-MES and IC-MEP, we can control the memory size for each processor to be 
1GB or 4GB. The results are listed in Table S1. Although the basic IC algorithm can complete the 
normalization in about half hour, it needs too much memory. IC-MES can run with just 4GB memory (a 
common memory configuration in office computers) and complete the same work in reasonable time 
(within 4 hours). IC-MEP can dramatically speed up the computation by using more processors (about 6 
minutes using 48 processors), while using only 1GB of memory in each processor. Please note that (i) the 
memory sizes reported here do not include memory used for system overhead such as the MPI 
environment; and (ii) the running time is dependent on the file I/O speed and the MPI system’s efficiency. 

 
For the 10K bp resolution data, none of the HPC computer nodes (with 128GB memory limit) can load 

the full matrix (about 343GB) for the basic IC algorithm. Table S1 shows that IC-MES and IC-MEP can use 
existing computing resources with common memory configurations to achieve the results with low 
memory usage and as quickly as possible. 
 
Table S1. Running time of three algorithms (IC, IC-MES and IC-MEP) on 10K and 20K bp resolution Hi-C data for 
two human cell types, using different numbers of processors and amounts of memory. All algorithms were 
terminated after 10 iterations for the purpose of this performance comparison, since each iteration has almost the 
same running time. “Memory” includes only the memory allocated only for computation in each processor, not 
system overhead. The running time format is “hours : minutes : seconds”.  

 

 Algorithm IC IC-MES IC-MEP 

20K bp data 
(151825 bins) 

#Processor 1 1 16 48 
Memory 86GB 4GB 1GB 1GB 

Time (gm12878) 0:36:50 3:58:14 0:19:50 0:6:38 
Time (hESC) 0:35:01 3:49:18 0:19:48 0:6:47 

10K bp data 
(303640 bins) 

#Processor 1 1 16 48 
Memory 343GB 32GB 2GB 2GB 

Time (gm12878) NA 47:27:32 4:50:03 0:26:02 
Time (hESC) NA 37:26:15 4:49:27 0:26:09 
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