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Supplementary	Text	S1	

1 EVIDENCE OF BOTH INTER- AND INTRA- GENE BIAS 

We observed a large bias parameter λ̂  difference among exons even within the single 

isoform genes, which proved the necessity of deliberating intra-gene bias for expression 

quantification (Section 3.1 of the main manuscript). In order to check how extreme the 

observed intra-gene bias is, the null distribution of the λ̂  differences under the 

assumption that the bias factor is a constant within genes was obtained through the 

following simulation. Based on the HBM liver RNA-seq data, the median λ̂  across all 

the exons was 0.660 (inferred from single-isoform genes). The median number of exons 

per single-isoform gene was 9. Accordingly, in our simulation we considered a single-

isoform gene containing 9 exons with length of 250. The average number of reads 

starting from a position E[X] was set to 2 and λ̂  was set to 0.660. We then simulated 

read counts for each exon according to GP ( E X[ ]× 1− λ̂( ) , λ̂ ). We repeated the simulation 

1000 times, and the maximum λ̂  difference among exons ( maxλ̂∆ ) was recorded each 

time. The histogram of maxλ̂∆ is plotted in Figure. S2. The probability of observing 

2.0ˆ
max >∆λ  is less than 0.001 based on this empirical distribution, providing strong 

evidence for the existence of intra-gene bias difference since we observed a median of 

0.20-0.32 maxλ̂∆ in the real RNA-seq data. 

Similarly, we estimated the gene-level bias over the same simulated reads under the 

assumption that λ̂  is the same across different genes. For each round, reads for 1000 

genes were generated and the maximum gene-level λ̂  difference was calculated. We 

repeated this procedure for 100 times. The largest maxλ̂∆ was 0.120 for the 100 

simulations. Therefore the range of 0.21-0.95 as mentioned in Section 3.1 of the main 

manuscript strongly supports the existence of inter-gene bias heterogeneity.  

2 POSITIONAL AND SEQUENCE-SPECIFIC BIAS CORRECTION IN SINGLE-

ISOFORM GENES 

For the comparison purpose, we considered the positional and sequence-specific bias 

removal. For the positional bias removal, we divided positions of each single-isoform 

gene into 20 bins from 5' to 3' of the gene. The average number of read counts kx  for 

the th
k  bin across all the single-isoform genes was calculated. Then the positional bias 

,p kw  for positions in the th
k  bin was 
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For the sequence-specific bias removal, we treated the preceding 6 nt of the first 

read end and the following 6 nt of the second read end as the primers. Let 

 denote the occurrence of primer ip  in the reads mapped. Then the 

sequence based bias for read i  was  
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Hence, read count ix  was adjusted according to the weights:
  

′xi = xi × wp ,bin i( ) × wS ,i  

where bin i( )  denotes the relative position bin that the position i  belongs to. For our 

model, we estimated the over-dispersion parameter for the virtual exon s  as s
λ  from the 

GP model. The corrected read count was ( )1 ii i sx x λ′′= × − , where iS  denotes the virtual 

exon that the position i  belongs to. For reads that span multiple virtual exons, the first 

virtual exon was used for the bias assignment. 

Besides the RNA-seq data considered in Figure 1, we also applied our method on 

three tier-1 cell lines in the ENCODE data (K562, GM12878, and H1 embryonic stem 

cells). WemIQ still demonstrated improved read uniformity in the K562 and GM12878 

cell lines. In the H1 embryonic stem cells, its result was comparable with that without 

the bias correction. The GP bias removal in WemIQ was still better than the positional 

and sequence-specific bias removal (Fig. S4).  

3 SIMULATION OF RNA-SEQ DATA BASED ON BASIC GENE STRUCTURES 

A variety of gene structures were used to compare the gene and isoform level 

expression quantification. We first simulated a two-isoform gene model, where a longer 

transcript with five 250-nt exons was generated and the second exon was skipped as a 

cassette exon to form the shorter isoform. We then considered a three-isoform gene 

model, where two shorter isoforms skipping cassette exon 2 (“cas2”) or 4 (“cas4”) were 

generated. To show the robustness of model, we also generated gene structures 

complicated by both alternative splice sites (“ASS”) and exon skipping events, or gene 

structures with transcripts missing from the annotation. These gene structures were 

shown in Figure S5. 
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Then two steps were used to simulate the pair-end RNA-seq reads:  (1) to generate 

the read counts starting at each position, (2) to assign fragment length for each read 

pair. When generating the read counts, generative models, either with uniform read 

sampling assumption (Li and Dewey, 2011) or with only a few known bias factors 

(Griebel, et al., 2012), could be problematic because the true bias might arise from 

every step of the RNA-seq experiment and could tangle with each other in a dynamic 

way. Instead, we directly estimated the bias level in the real data, and simulated the 

reads with similar over-dispersion properties through the negative binomial distribution 

to better mimic the real situation. Although GP distribution has been proved to 

significantly improve the fitting of RNA-seq reads (Srivastava and Chen, 2010), we used 

the negative binomial distribution ( ),NB r p  to simulate the reads to avoid the possible 

advantage to our model in the following analyses. The negative binomial distribution 

( ),NB r p  can be treated as a gamma-Poisson mixture: a ( )Poisson θ  distribution whose 

θ  itself is a random variable and distributed as 
  
Gammar r, p 1− p( )( ) . The mean of 

( ),NB r p  is ( )1rp p−  and the variance is ( )21rp p− . Therefore, we can vary p  to 

simulate different degrees of overdispersion between exons. For exons shared between 

isoforms, we kept i
p  constant and varied the ratio of their isoform-specific expression 

by r . 

For the two isoform gene models, i
p  was sampled uniformly from 0.75 to 0.95 for 

exon i  and kept constant for exons shared between the two isoforms. Then we set 

1r =  for the minor isoform, and sampled a transcript expression ratio f  with equal 

probabilities from 
 

2,3,4{ } with replacement. Therefore, in the major isoform, reads for 

exon i  follows the distribution 
  
NB( f , p

i
) . To simulate the low-coverage cases, the r  

value was set to be 0.05. For the high coverage scenarios ( 1r =  for minor isoforms), 

the average position-level read count was 19.35 to 22.28, equivalent to the 99.3 

percentile in the ENCODE RNA-seq data (see details in the section of “real datasets”). 

For the relatively low coverage scenarios ( 0.05r =  for minor isoforms), the average 

position-level read count was 0.96 to 1.11. For the three-isoform models, we first 

selected one isoform as the minor one and set its r  equal to one, and then randomly 

selected two expression ratios 1f  and 2f  for the remaining two isoforms. The relative 

errors of isoform percentage estimates of the same gene were summed up to evaluate 

the overall performance. A total of 1,000 cases were simulated in the two-isoform gene 

model with both the high and the low coverage, as well as the model with incomplete 

annotation. For other three-isoform gene models, 500 cases were simulated. 
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After the read counts were generated for each exonic position, the fragment length 

was assigned for each 50-bp paired-end read using the Gaussian distribution with the 

mean of 236.49 and the standard deviation of 23.55. These parameters were inferred 

from the single-isoform genes in the human tissue RNA-seq datasets (Illumina 

BodyMap2 transcriptome, ERP000546). For a read pair, if the ending position was 

beyond the corresponding transcript, this fragment length was defined as invalid. Up to 

5 trials were performed to find a valid fragment length. Otherwise, this read was 

discarded. 

4 SIMULATION OF RNA-SEQ DATA BASED ON REAL ENSEMBL GENE 

STRUCTURES 

To further demonstrate the performance of WemIQ, we selected a variety of Ensembl 

gene structures to simulate RNA-seq reads. We set up three criteria for the real gene 

structure selection: 1) this gene contains at least one protein coding transcript; 2) it 

contains at least one cassette exon with at least 50 bp in length to avoid extremely 

challenging gene structures (e.g., all the transcripts are non-identifiable, or they only 

contain several nucleotide differences); 3) the gene is on chromosome 1. The cassette 

exon list was downloaded from the Ensembl website 

(http://www.ensembl.org/index.html). As a result, 78 genes with 2~10 transcripts on 

chromosome 1 were selected based on the Ensembl Annotation 

(http://www.ensembl.org/index.html). 

I. Assignment of over-dispersion parameters 

Similarly we adopted the negative binomial distribution NB r, p( )  to simulate the reads. 

The reason that we chose i
p  uniformly from 0.75 to 0.95 for exon i  is the following. The 

expectation and variance of a NB distributed variable X  can be written as 	

	

E X[ ] =
rp

1− p

var X[ ] =
rp

1− p( )
2

	 (3)	

Due to the imperfectness of the experiment, variance larger than expectation is often 

observed. We could represent the over-dispersion from equation (3) by 

	 over − dispersion =
var x[ ]
E x[ ]

=
1

1− p
	 (4)	
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The mean and variance of a GP distributed variable X can be represented as  

	

E X[ ] =
θ

1− λ

var X[ ] =
θ

1− λ( )
3

	 (5)	

	

As a result the over-dispersion can be approximated as  

	 over − dispersion =
var X[ ]
E X[ ]

=
1

1− λ( )
2
	 (6)	

To match the two over dispersion rates, we require  

	
1

1− λ( )
2

=
1

1− p
	 (7)	

so that  

	 	 (8)	

We therefore utilized the estimated overdispersion rate from the real data to set the 

range of the parameter p. To exclude very extreme cases, we excluded the upper and 

bottom 10 percent quantiles from the estimated λ̂  in the real data. As a result, 

unif 0.75,0.95[ ]  was selected for p. 

II. Generate the relative expression for each transcript 

For the each transcript for a gene, the relative expression was generated from a uniform 

distribution. Specifically, we first sampled f
1
 from unif 0,1( )  for transcript 1, and then 

f
2

~ unif 0,1− f
1[ ]  and f

3
~ unif 0,1− f

1
− f

2[ ]  for transcripts 2 and 3, and so on. To exclude the 

situation that we might be biased to give larger relative expression values to transcript 

1, we then shuffled  to reassign them randomly to different isoforms. 

 It is reported that at a certain time point for a specific tissue, usually there is only 

one dominant transcript for the multiple-transcripts genes (Gonzalez-Porta, et al., 2013). 

Our simulation above incorporated such cases by giving very large values to a certain 

transcript. At the same time, we considered the effect of balanced expressions from 

similar transcripts to the final expression analysis.  

The total r  value was sampled uniformly from 0.5 to 2.0. Correspondingly, the 

average number of reads per position was from 4 to 60 if there were four transcripts, 

representing a variety of highly and moderately expressed genes. 

III. Generate the number of reads at each position 
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For each position k  of the transcript j , the number of fragments m
k , j  is generated by 

NB rfi , pnk
( )  , where nk

 indicates which the virtual exon this position belongs to.  

IV. Generate the fragment length for each fragment  

The fragment length was assigned randomly following a Gaussian distribution with the 

mean of 236.49 and the standard deviation of 23.55. Similarly, for a read pair, if the 

ending position was beyond the corresponding transcript, this fragment length was 

defined as invalid. Up to 5 trials were performed to find a valid fragment length. 

Otherwise, this read was discarded. We generated 75bp pair-end reads for these set of 

simulations.  

Due to the fast speed of STAR (Dobin, et al., 2013), we utilized it instead of TopHat 

for mapping during the manuscript revision process. First, Ensembl V75 annotation was 

given to STAR to build the genome, and then the simulated reads were mapped to the 

genome with up to 2 mismatches. The resultant sam files were givens to WemIQ for 

expression quantification. Cufflinks requires that the input sam or bam files should be 

sorted, so we used the samtools to sort the mapped files before estimating expressions. 

Again, RSEM would call bowtie internally for its own quantification analysis. Additionally, 

as suggested during the manuscript revision process, we also added MMSEQ (Turro, et 

al., 2011) for the performance comparison. It calls Bowtie internally before expression 

quantification. Let fi
 represent the relative expression of transcript j among the m 

isoforms of a gene, then the estimation error for isoforms of the same gene was 

calculated as  

	 ��� − ����  (9) 

It is worth mentioning that in simulations based on basic gene structures (i.e. the 

synthetic ones), since the minor isoform percentage was at least 1/5, we utilized the 

relative error (∑ ��� − ����/��
�
�	
 ) for performance evaluation as mentioned in Section 2.2 

of the main manuscript. However, in the real gene structure, due to the simulation 

scheme, the smallest isoform percentage could be very small and thus the relative error 

might be dominated by these isoforms. Hence we adopted equation (9) for simulations 

based on real gene structures. 

For the above simulations, the boxplots of the errors are given in Figure S6. It is 

shown that WemIQ demonstrates lower estimation errors than those for Cufflinks, 

RSEM, and MMSEQ (Ps < 0.0007, Wilcoxon tests). 
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For a better virtualization, the scatter plots of the estimated isoform percentage vs. 

the true percentage was given in Figure 5, where the red dots represent the isoforms 

with errors larger than 0.1. As it is shown, WemIQ apparently provides smaller number 

of such red dots. The R-squared values using linear regressions from WemIQ was as 

high as 0.9273, larger than 0.8828 for MMSEQ, 0.879 for cufflinks, and 0.8748 for 

RSEM. 

In order to further test the robustness of WemIQ, we selected all the multi-isoform 

autosomal genes from the Ensembl annotation (version 75).  Similar strategy was 

performed to simulate the reads except that r was uniformly selected from 0.25 to 0.5 to 

control the whole coverage of the full dataset.  For the analysis of MMSEQ, we included 

the isoform percentage estimation from its Gibbs sampling results (referred as 

MMSEQ_GS) in addition to the direct ratio between isoform expression and gene 

expression which were also reported from MMSEQ (referred as MMSEQ_ratio).  Note 

that the direct ratio was used in other places with “MMSEQ” labels.  The isoform-level 

estimation errors were summarized in Figure S7.  WemIQ still provides more accurate 

estimations. Here, we turned on (w/) and turned off (w/o) the bias correction of Cufflinks 

and RSEM for the comparison. 

5 MORE DETAILS OF REAL DATASETS AND READ MAPPING 

For the bias removal comparison, Ensembl and Refseq gene annotations (version 

GRCh37/hg19) were downloaded from the UCSC genome browser 

http://genome.ucsc.edu/. To show the non-uniformity of read sampling, we analyzed the 

single-isoform genes with 50-bp paired-end reads from the human brain, liver, kidney, 

and muscle data sets (Illumina BodyMap2 transcriptome, ERP000546, Fig. 1). These 

genes have only one isoform according to both the Ensembl and Refseq annotations. 

Additionally we applied our method on three tier-1 cell lines in the ENCODE data (K562, 

GM12878, and H1 embryonic stem cells) as shown in Figure S4.  

TaqMan qRT-PCR data in a human brain sample from the MAQC project (Shi, et al., 

2006) was used for the evaluation of gene expression estimation. Specifically, we 

applied WemIQ, Cufflinks, RSEM on a set of 50-bp pair-end reads from the same 

human brain sample (SRP002274 (Robinson and Smyth, 2007)). We required that for 

each gene, at least 75% of the qRT-PCR replicates had a detectable expression and 

WemIQ, Cufflinks, and RSEM all provided a reliable estimate. Finally, 526 genes were 

compared between the qRT-PCR estimates and the RNA-seq estimates from each 

method. The scatter plots of the estimates were given in Figure S8. We also turned off 
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the bias correction option for Cufflinks and RSEM. Without the bias correction of 

Cufflinks, the correlation value was 0.580 which was lower than the Cufflinks result with 

the correction (0.681). For RSEM, the correlation without the bias correction was 0.697, 

very similar to the result with the bias correction (0.700). Both of them were lower than 

WemIQ (0.734). 

We downloaded four RNA-seq datasets on the human GM12878 cells from the 

ENCODE project to compare the consistency of estimates across technical replicates 

and laboratories (GEO Accession code: GSM958728 and GSM758559) (2004). The two 

datasets (technical replicates) from the California Institute of Technology laboratory 

(“Caltech”) were 75-bp pair-end reads and the other two (technical replicates) from the 

Cold Spring Harbour laboratory (“Cshl”) were 76-bp pair-end reads preserving the 

strand information. The gene and isoform expressions were estimated according to the 

Refseq annotation by WemIQ, Cufflinks, or RSEM. Before the comparison among 

multiple methods, we found that several highly expressed genes took up to 40% of the 

total expression in all four datasets based on Cufflinks, but were barely expressed 

according to RSEM and WemIQ estimation. After careful deliberation, these genes were 

short microRNAs or small nuclear RNAs that are usually less than 100bp in length. And 

only one end of the pair-end reads were mapped to several beginning positions of these 

transcripts. But in WemIQ only concordant pair-end reads were considered, so these 

genes were recognized as lowly expressed. RSEM also assigned very low expression 

levels to these genes. Therefore, we removed transcripts less than 150-nt from the 

following studies. In the analyses, we assembled a group of highly expressed genes as 

a high-confident set to test the methods. They were the top 4 percent genes (628 

genes) according to the gene length normalized read counts summed from all the four 

data sets. On the isoform level, we had to rely on the isoform expression estimates to 

define highly expressed isoforms, but different methods provided different isoform 

estimates. Hence, we selected the top 10 percent expressed isoforms from each 

method and the union of these isoforms (1,938 transcripts) was defined as highly 

expressed isoforms. For the comparison of two datasets, the fold change was 

calculated as the ratio of the larger value to the smaller value. For a better virtualization, 

the scatter plots of cross-lab estimates are given in Figures S9 and S10. Cufflinks 

without the bias correction provided slightly worse results than the version with the 

correction. The median expression fold change across difference labs was 1.52 VS. 

1.50 and 1.71 VS. 1.68 for the gene and isoform expression levels. RSEM also 

demonstrated similar or slightly worse performance without the bias correction 
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compared with that with the bias correction (1.98 VS. 1.80 at the gene level and 1.66 

VS.1.66 at the isoform level). WemIQ still outperformed both methods no matter 

whether they turned on the bias correction or not. 

Twenty-one mouse RNA-seq samples were downloaded from SRA (SRP015959 

(Shalek, et al., 2013)), with libraries constructed from 18 single cells, and 3 populations 

of 10,000 cells. Due to the high contamination of the adaptor sequences (Shalek, et al., 

2013), we first trimmed the reads into 50 bp before mapping them to the transcriptome. 

NCBI annotation build37.1 for mice was used and genes that are less than 150bp in 

length were removed. For each gene, we summed the read counts from the 18 single-

cell RNA-seq datasets and selected the top 4 percent of genes as the highly expressed 

gene group (991 genes). Isoform expression estimates were averaged across the 18 

single-cell data for each of the three methods, and the union of the top 4 percent 

average isoforms from each method was defined as the highly expressed isoforms (907 

isoforms). Cufflinks with or without the bias correction performed similarly. At the gene 

level, the median coefficient of variation across different cells for Cufflinks with and 

without the bias correction was 0.87 and 0.88 respectively. For the highly expressed 

isoforms, the coefficient of variation did not show significant differences (0.84 VS. 0.82 

for with and without the bias correction). Besides, RSEM also provided similar results 

with or without the bias correction. For example, the CV values for the highly expressed 

genes and isoforms were 0.89 and 0.84 respectively without the bias correction 

(compared to 0.89 and 0.85 for RSEM with the bias correction). 

In terms of read mapping, both WemIQ and Cufflinks rely on additional software for 

read mapping before quantification, while RSEM and MMSEQ called Bowtie internally. 

In the main manuscript, Sections 3.1-3.4, Sections 3.6-3.8 all used TopHat for the pair-

end reads mapping. During the manuscript revision process, STAR was used as the 

alternative mapper due to its faster speed for all the remaining analysis (including 

Section 3.5 of the main manuscript, Sections 1, 2 (only for the ENCODE data sets), 4-7 

of Text S1).  

6 ACCURACY OF WEMIQ ON GENE-LEVEL ESTIMATION WITH HEAVILY 

OVERLAPPED TRANSCRIPTS  

To test the accuracy of WemIQ gene-level estimation under heavily overlapped 

transcripts, we selected the gene ENSG00000162598 from the Ensembl annotation to 

simulate the reads. The gene structure is shown in Figure S11. In total there are 6 
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transcript isoforms in ENSG00000162598, of which ENST00000488027 and 

ENST00000395552 overlap significantly. Then we repeated 50 simulations to evaluate 

the gene-level and isoform-level estimation error. For each repeat, we have 
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where, θ̂i, j
 represents the percentage of isoform j  in gene i , and ĝi

 represents the 

expression of gene i . Then the boxplot of gene and isoform level errors are given in 

Figure S11. The isoform-level errors were generally high but the gene-level errors were 

still low. WemIQ provided more accurate gene-level expression estimates than other 

methods (the Wilcoxon test P values = 8.8 × 10−09, 3.1 × 10−12, and 8.1 × 10−06 as 

compared with RSEM, Cufflinks, and MMSEQ). In addition, WemIQ also provided more 

accurate isoform-level estimation for this highly overlapped gene structure (P < 0.00015 

in the Wilcoxon tests with the other three methods).  

Based on the simulations, we did observe the anti-correlated errors for genes and 

isoforms ( geneie
,  vs. ∑=

j isojiisoi ee ,,, ) in MMSEQ estimates (−0.17). However, RSEM, 

Cufflinks, and WemIQ, the correlation between gene and isoform estimation errors was 

0.13, 0.20, and −0.04 respectively. None of these correlations were significant by the 

correlation test in R. 

7 ROBUSTNESS OF WEMIQ ESTIMATION BASED ON READ RESAMPLING 

A good expression quantification method requires highly consistent estimation over 

replicates. To test the robustness, we compared the isoform quantification results 

across different sub-sampled reads from the same RNA-seq experiment. Specifically, 

we selected all the genes on chromosome 1 according to the Gencode annotation 

version 19 (http://www.gencodegenes.org/). RNA-seq data were downloaded from 

ENCODE on the GM12878 cell line (cytosol long RNA, polyA+). For all the reads that 

were uniquely mapped to chromsome1, we sub-sampled 75% of the reads and 

repeated it for 10 times. By requiring non-zero expression in at least one of the sampled 

datasets, 9281 isoforms were included in the following analysis. The boxplots of the 

maximum isoform percentage difference across the subsamples are plotted in Figure 

S12 (outliers not shown for visual convenience). The median of the maximum isoform 
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percentage difference for these 9281 isoforms was only 0.007 by WemIQ, less 0.01 

from Cufflinks (the Wilcoxon test P < 2.2×10
–16). 

In order to evaluate the stability of WemIQ under different read coverage, we 

selected one gene ENSG00000127184 from the Ensembl annotation (ENCODE 

GM12878 cell line), which has 7 isoforms and some of the isoforms heavily overlap with 

each other, leaving the isoform quantification extremely challenging. Ten sub-sampling 

rates (10%, 20%, …, 90%) were used and for each case 100 samplings were repeated. 

The boxplots of isoform percentage of ENST00000247655 (the major isoform) are given 

in Figure S13. It is shown that the variance of isoform percentage estimates is 

coverage dependent and higher coverage would lead to more robust estimates. 

However, even when the sub-sampling rate was only 10%, the interquartile range of the 

estimates was still less than 0.05, which again suggests very robust isoform-level 

quantification for our WemIQ. 
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Figure S3. Boxplots of the KS statistics by different methods in four HBM RNA-seq data 

sets. 

 

WemIQ non seq pos both

0
.0

0
.2

0
.4

0
.6

0
.8

kidney

K
S

 s
ta

ti
s
ti
c

WemIQ non seq pos both

0
.0

0
.2

0
.4

0
.6

0
.8

brain

K
S

 s
ta

ti
s
ti
c

WemIQ non seq pos both

0
.0

0
.2

0
.4

0
.6

0
.8

muscle

K
S

 s
ta

ti
s
ti
c

WemIQ non seq pos both

0
.0

0
.2

0
.4

0
.6

0
.8

liver

K
S

 s
ta

ti
s
ti
c



15 

 

Figure S4. Bias correction on 3 tier-1 ENCODE RNA-seq data sets. 
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Figure S6. Isoform percentage errors of four methods under 78 real gene structures. 
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Figure S7. Isoform percentage errors of four methods under the genome-wide real gene 

structures. 



 

Figure S8

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Scatter plots of RN. Scatter plots of RNA-seq expression estimates seq expression estimates seq expression estimates VS. qRTVS. qRT-PCR values for the MAQC datafor the MAQC datafor the MAQC data. 
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Figure S9. Scatter plots of the gene-level quantification across different labs. Red dots are those with gene-level quantification with larger 

than 2 fold change. 
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Figure S10. Scatter plots of the isoform-level quantification across different labs. Red dots are those with isoform-level quantification with 

larger than 2 fold change. 
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Figure S11. Gene and isoform level estimation errors of simulated reads under the 

structure of ENSG00000162598.  
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Figure S12
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Figure S12. Boxplot
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Figure S13

(ENST00000247655) 
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Figure S13. Boxplot
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