Supplementary Table 1

DNA sequencing statistics.

Tumours were targeted at a depth of 50X and had a real median depth of 62X (range 52.6-92.3X). A median of 86% of the exome was covered at depths greater than 50X (65.8 - 95.2%). Morphologically normal tissues and blood controls were targeted to a sequence depth of 30X with a median real depth of 34X (range 30.7-38.8X). A median of 81% of the exome was covered at depths greater than 30X (74.2 – 86.5%). A median of 1.8% of the exome was not covered, a median of 95.3% of reads were unique and there was a median of 8.8% unmapped pairs.

							Percentage coverage at read depths						
ID	Target coverage	Gbp Seq	UM Pairs	Unique	Phys X	Seq X	1+	11+	21+	31+	41+	51+	101+
0006_Blood	30x	118.83	8.50	95.93	47.27	33.52	98.22%	97.17%	93.65%	82.15%	47.32%	11.97%	0.08%
0006_N	30x	122.93	10.23	97.25	57.20	34.46	98.25%	97.17%	93.33%	79.79%	59.13%	40.17%	0.91%
0006_T1	50x	231.87	10.71	94.96	98.49	62.34	98.08%	97.33%	96.66%	95.23%	92.30%	86.71%	17.69%
0006_T2	50x	225.77	9.39	94.52	96.11	62.01	98.29%	97.76%	97.25%	96.05%	93.14%	87.36%	15.11%
0006_T3	50x	223.25	8.60	95.37	100.70	62.55	98.09%	97.24%	96.44%	94.77%	91.59%	86.30%	8.10%
0006_T4	50x	206.91	9.14	95.42	87.73	57.53	98.33%	97.79%	97.21%	95.65%	92.01%	84.12%	11.09%
0007_Blood	30x	108.31	8.29	96.69	46.71	30.73	98.03%	96.69%	91.96%	74.65%	36.70%	8.08%	0.07%
0007_N	30x	109.56	8.98	97.62	48.58	31.24	98.30%	97.05%	91.91%	74.17%	49.60%	28.30%	0.16%
0007_T1	50x	224.97	10.01	94.59	98.44	61.14	98.17%	97.41%	96.56%	94.72%	91.38%	85.76%	4.60%
0007_T2	50x	189.37	8.68	96.10	85.08	53.34	98.23%	97.56%	96.78%	94.64%	89.33%	78.14%	8.80%
0007_T3	50x	228.58	8.27	94.68	99.13	63.75	98.30%	97.76%	97.28%	96.18%	93.78%	89.05%	19.61%
0007_T4	50x	230.28	8.64	95.03	106.71	64.09	98.25%	97.57%	97.06%	95.94%	93.53%	88.93%	16.41%
0007_T5	50x	210.12	8.78	95.20	88.30	58.48	98.30%	97.67%	97.09%	95.63%	92.45%	85.91%	6.16%
0008_Blood	30x	123.45	8.48	96.58	52.59	35.06	98.23%	97.23%	94.19%	83.79%	58.37%	25.85%	0.13%
0008_N	30x	137.11	9.36	97.17	61.12	38.81	98.32%	97.50%	95.19%	86.54%	69.41%	50.84%	1.81%
0008_T1	50x	221.14	8.75	87.77	87.62	56.90	98.09%	97.02%	95.06%	90.46%	80.09%	65.82%	0.26%
0008_T2	50x	203.19	8.22	87.95	74.38	52.57	98.22%	97.61%	96.78%	94.03%	90.06%	78.11%	0.26%
0008 T3	50x	340.00	9 46	93 42	145.33	92 27	98 47%	97 92%	97 60%	97 18%	96 46%	95 22%	66 91%

Supplementary Table 2

Clinical characteristics of prostate cancers at initial diagnosis

a Initial Diagnosis.

Case Ref	PSA at diagnosis	Clinical Stage at diagnosis	Pathological Stage	Gleason Score	Gleason Sum	Progression
Case 6	7	T1NxMx	T3aN0Mx	3+4	7	Alive and relapse free at 43 months
Case 7	10.1	T1NxMx	T3aN0Mx	3+4	7	Alive and relapse free at 42 months
Case 8	6.7	T1N0Mx	T3aNxMx	3+4	7	Alive and relapse free at 36 months

 ${\bf b}$ Gleason of samples selected for DNA sequencing.

Sample	SangerID	Gleason
6_T1	PD7445a	3+4=7
6_T2	PD7445c	3+4=7
6_T3	PD7445d	3+4=7
6_T4	PD7445e	3+3=6
6_N	PD7445f	
6_Blood	PD7445b	
7_T1	PD7446a	3+3=6
7_T2	PD7446c	4+3=7
7_T3	PD7446d	3+3=6
7_T4	PD7446e	3+4=7
7_T5	PD7446f	3+4=7
7_N	PD7446g	
7_Blood	PD7446b	
8_T1	PD7447a	3+4=7
8_T2	PD7447c	4+3=7
8_T3	PD7447d	3+3=6
8_N	PD7447e	
8 Blood	PD7447b	

Supplementary Table 3

A list of potential prostate cancer driver genes.

A list of potential prostate cancer driver genes compiled from Grasso *et al.*⁶, Garraway *et al.*⁷ and the ICGC DCC 16 release. Mutations were classed as potential driver mutations if they were recurrent and made a coding change or occurred within a splice site. For the ICGC dataset the mutation had to have high functional impact and appear in three or more donors. This gave 5542 potential driver genes. Out of these 91 genes were affected by coding mutations or mutations occurring in the splice site in the complex men dataset and are shown in this table. Mutations in 44 genes occurred in two samples within a patient. The fact that there were no potential drivers found in more than two samples suggests that these drivers are likely to be late metastatic drivers. *DCC* was the only potential driver gene that occurred in more that one patient. No genes were mutated independently in more that one sample from the same patient i.e. convergent evolution was not found. Well known cancer genes such as *ATM*, *KIT*, and *PTEN* were mutated. A number of potential driver genes were observed in morphologically normal tissue: in 7_N we detected *BCAT1* (Garraway), *CHPF2* (Grasso), & *FAT2* (Grasso, & Garraway) and in 6_N we found *RYR3* (Grasso, Garraway and ICGC).

Samples	Gene	P.Description	Туре	num samples	num hits	source
0008_T1, 0008_T2	DCC	p.V963I	misssense	2	2	Garraway
0006_T1, 0006_T2	DCC	p.Y341H	misssense	2	2	Garraway
0007_T1, 0007_T2	ABCF3	p.R269W	misssense	2	1	Tomlins, Garraway
0007_T1, 0007_T2	ADAMTS18	p.R1014H	misssense	2	1	Garraway
0006_T1, 0006_T2	AGAP2	p.?	splice	2	1	Tomlins, Garraway
0006_T1, 0006_T2	ANKRD17	p.T1972A	misssense	2	1	Tomlins
0006_T1, 0006_T2	ANKRD50	p.R324fs*7	frameshift_variant	2	1	Tomlins, Garraway
0008_T1, 0008_T2	ATG9A	p.C122Y	misssense	2	1	Tomlins
0008 T1,0008 T2	ATM	p.L1439P	misssense	2	1	Tomlins, Garraway, ICGC
0006 T1,0006 T4	CALCRL	p.W399C	misssense	2	1	Tomlins
0007 T4,0007 T5	CCDC105	p.A292T	misssense	2	1	Tomlins
0008 T1,0008 T2	CEACAM1	p.E490K	misssense	2	1	Tomlins
0006 T1,0006 T4	CHSY3	p.R527C	misssense	2	1	Tomlins
0006 T1,0006 T4	CNGA4	p.R213C	misssense	2	1	Tomlins, Garraway
0006 T1,0006 T2	EPB41L3	p.A921T	misssense	2	1	Garraway, ICGC
0006 T1,0006 T4	FBN2	p.G721S	misssense	2	1	Tomlins, Garraway
0008 T1,0008 T2	FLG	p.R3907C	misssense	2	1	Tomlins, Garraway
0006 T1,0006 T4	FLNB	p.N1285S	misssense	2	1	Tomlins, Garraway
0006 T1,0006 T4	G6PC	p.E319K	misssense	2	1	Garraway
0007 T1,0007 T2	HIC1	p.P411L	misssense	2	1	Garraway
0006 T1,0006 T2	HIST1H2BJ	p.V112E	misssense	2	1	Garraway
 0006_T1, 0006_T4	KCNK9	p.A320T	misssense	2	1	Tomlins
0007_T4, 0007_T5	KCTD8	p.R407H	misssense	2	1	Tomlins, Garraway
0007_T1, 0007_T2	KIT	p.Q79K	misssense	2	1	Tomlins
0006_T1, 0006_T2	LCA5	p.S32C	misssense	2	1	Garraway
0006 T1,0006 T4	MEGF10		SPLICE_REGION_VAR insertion	2	1	Tomlins
0008 T1,0008 T2	MIA3	p.P1170S	misssense	2	1	Garraway
0008 T1,0008 T2	MYH2	p.R1755H	misssense	2	1	Tomlins, Garraway
 0008_T1, 0008_T2	MYH7	p.R1420Q	misssense	2	1	Tomlins, Garraway
0006_T1, 0006_T4	MYO1F	p.L191V	misssense	2	1	Tomlins
0008_T1, 0008_T2	ODZ3	p.Y2318D	misssense	2	1	Tomlins, Garraway
0007_T1, 0007_T2	OR5H6	p.L71F	misssense	2	1	Tomlins
0006_T1, 0006_T2	PCDH11X	p.R1188*	nonsense	2	1	Garraway
0008_T1, 0008_T2	PHF10	p.A71G	misssense	2	1	Garraway
0007_T4, 0007_T5	PIPOX	p.I316T	misssense	2	1	Garraway
0006_T1, 0006_T2	ROS1	p.T2045K	misssense	2	1	Tomlins, Garraway
0006_T1, 0006_T2	RPGRIP1	p.G917R	misssense	2	1	Tomlins
0007_T1, 0007_T2	SF3B1	p.K700E	misssense	2	1	Tomlins, Garraway
0006_T1, 0006_T4	SKIV2L2	p.G930fs*30	frameshift_variant	2	1	Tomlins
0008_T1, 0008_T2	SMCHD1	p.G68D	misssense	2	1	Garraway

0006_T1, 0006_T2	SORBS1	p.S1230L	misssense	2	1	Garraway
0006_T1, 0006_T2	TNNT3	p.R99H	misssense	2	1	Garraway
0007_T1, 0007_T2	UBR4	p.R450G	misssense	2	1	Garraway
0006_T1, 0006_T4	ZC3H13	p.E754fs*28	frameshift_variant	2	1	Tomlins, Garraway
0007_T1, 0007_T2	ZNF208	p.T1001S	misssense	2	1	Garraway
0008_T1	AASDH	p.E182K	misssense	1	1	Garraway
0007_T2	ABI3BP	p.R717*	nonsense	1	1	Tomlins, Garraway
0006_T3	ADAP2	p.M77I	misssense	1	1	Tomlins
0006_T1	ASTN1	p.?	splice	1	1	Tomlins, Garraway
0007_N	BCAT1	p.L276M	misssense	1	1	Garraway
0006_T3	CEP110	p.R1431C	misssense	1	1	Tomlins
0006_T2	CHD5	p.R471Q	misssense	1	1	Garraway
0007_N	CHPF2	p.R470L	misssense	1	1	Tomlins
0006_T3	DCAF8L1	p.R152Q	misssense	1	1	Tomlins
0006 T3	DGKG	p.D634N	misssense	1	1	Tomlins
0006_T1	DNPEP	p.E215V	misssense	1	1	Garraway
_ 0007 T1	FAM135B	p.A300T	misssense	1	1	Tomlins, Garraway
0007 N	FAT2	p.S4308T	misssense	1	1	Tomlins, Garraway
_ 0007 T5	FREM2	p.V1477A	misssense	1	1	Tomlins, Garraway
0006 T3	GALNT13	p.W128*	nonsense	1	1	Garraway
0006 T2	GBP7	p.D97G	misssense	1	1	Tomlins
0006 T3	GLUD1	p.G72R	misssense	1	1	Garraway
0007 T5	KCNJ4	p.T131M	misssense	1	1	Tomlins
0006 T4	KIF19	p.?	essential splice	1	1	Garraway
0006 T2	KIF1A	p.M1484V	misssense	1	1	Tomlins Garraway
0007 T5	KIF2B	p.R36C	misssense	1	1	Tomlins
0006 T4	KLHL11	p.H482N	misssense	1	1	Tomlins
0006 T3	KPNA7	p.A440E	misssense	1	1	Tomlins
0006 T4	LRP4	p.P946A	misssense	1	1	Tomlins, Garraway,
0006 T2	MEIS2	p.R131C	misssense	1	1	Tomlins
0006 T2	MYC	p.P177R	misssense	1	1	Tomlins
0006 T2	OGDH	p.H670N	misssense	1	1	Tomlins
0006 T2	PCDHA2	p.R47C	misssense	1	1	Tomlins Garraway
0006 T4	PCDHA3	p.R65W	misssense	1	1	Garraway
0006 T4	PCDHB11	p.Y279F	misssense	1	1	Garraway
0007 T5	PCSK2	p.G366S	misssense	1	1	Tomlins
0006 T1	PDS5A	p.?	splice	1	1	Garraway
0006 T4	PLEC	p.V2825E	misssense	1	1	Tomline Garraway
0006 T1	PTEN	p.1253N	misssense	1	1	Tomlins, Garraway,
0006 T1	RP1	p.S440L	misssense	1	1	Tomlins, Garraway
0006 T1	RYR2	p.V3597A	misssense	1	1	Tomlins, Garraway, ICGC
0006 N	RYR3	p.A525S	misssense	1	1	Tomlins, Garraway, ICGC
0007 T2	SDHA	p.M1V	misssense	1	1	Garraway
0006 T2	SEMA3D	p.R294H	misssense	1	1	Tomlins Garraway
0006 T1	SETX	p.I2150T	misssense	1	1	Tomlins, Garraway
0007 T3	SH3RF2	p.R286C	misssense	1	1	Tomlins
0006 T1	SLC13A3	p.M510I	misssense	1	1	Tomlins
0006 T2	SLC22A2	p.E527K	misssense	1	1	Tomlins
0006 T3	SPAG17	p.L476l	misssense	1	1	Tomlins, Garraway
0007 T3	STAB1	p.I1704T	misssense	1	1	Tomlins, Garraway
0007 T2	TEKT3	p.R437C	misssense	1	1	Garraway
_ 0006 T4	ZNF236	p.F976L	misssense	1	1	- Tomlins, Garraway

ICGC PROSTATE GROUP Membership (in addition to those named in the author list).

Steve Bova Freddie Hamdy Yong-Jie Lu Anthony Ng Yongwei Yu Hongwei Zhang

DISCUSSION OF SOMATIC MOSAICISM

The recent publication by Holstege *et al*¹ raises the possibility that the mutation that we observed in morphologically normal prostate tissue may arise through somatic mosaicism. Here we show that the processes occurring in morphologically normal prostate and those reported by Holstege *et al*¹ are distinct.

There are a number of considerations:

- 1. First, the rate of mutation in human cells is thought to be around 1-2.5 mutation per cell division^{2,3}. At this rate of mutation around 200-500 cell divisions would have had to occur in the single progenitor cell that gives rise to the mutated clones of cells that we observe in morphologically normal prostate (we observed 518 mutations in morphologically normal tissue from Case 6 and 454 mutations in Case 7).
- 2. The samples of DNA that we prepare from morphologically normal prostate are around 20-30 micrograms, a portion of which (1-2 micrograms) was subject to DNA sequencing. This means that our DNA samples are prepared from a minimum of about 4,000,000 cells (6pg of DNA per cell, assuming 100% DNA yield). To generate this tissue sample a single somatic prostate cell containing 500 mutations would have to undergo a minimum of 20-24 additional doublings: possibly many more since it would have to grow out against competition from other cells in the prostate.
- 3. In our manuscript we argued that selection would be involved in generating the clone of morphologically normal cells containing high mutational burden, but it is theoretically possible that the clone could arise by somatic mosaicism. However, even if somatic mosaicism is involved, the overall process would still have to be accompanied by a high rate of cell division and/or high (per cell division) rate of mutation. In a model involving somatic mosaicism the clone of cells could then arise without selection through genetic drift (or from an origin in prostate stem cells) only in the context of high rates of cell division, a property that is documented to be absent in morphologically normal prostate tissue⁴, and/or high mutation rate. There is no evidence to support either of these possibilities in normal prostate development. Our work highlights the presence of high mutation rates in morphologically normal prostate tissue for the first time and will prompt future studies to provide clearer insights into the mechanisms and the effects on pathogenesis.
- 4. We have compared our findings with data obtained by Holstege *et al*¹ who examined the total white blood cell DNA from a 115-year old woman: in contrast to morphologically normal prostate it is well documented that hematopoietic cells have a high rate of cell turnover⁵. They found evidence for somatic mosaicism with the blood sample containing approximately 424 somatic mutations. By comparison no verifiable mutations were detected in similarly analysed normal brain tissue. Hematopoietic stem cells are thought to renew once or twice per year giving rise to

multi-potent progenitor that through hematopoiesis yields diverse blood cell types⁵. A rate of 2.5 accumulated somatic mutations per cell division and 200 doublings (~2 per year) would account for the figure of 424 mutations.

5. Critically in the study presented by Holstege *et al*¹ there was a high level of attrition of telomeres in the white blood cells, compared to intermediate length of telomeres in most other tissue, and long telomeres in non-dividing tissue (brain), consistent with the differences in cell turnover in these tissues. When we examined telomere length using the TelSeq tool⁶ we found telomere lengths of 6.3kb in morphologically normal tissue from Patient 6, and 6.2kb in Patient 7. The telomeres in the corresponding cancers were slightly longer that in morphologically normal tissue in Patient 6 and the same in Patient 7. We concluded that the somatic mosaicism observed in white blood cells from the study of Holstege *et al*¹ was distinct from the phenomena that we were observing in the morphologically normal prostate; based on the absence of high levels of telomere attrition, and on the higher mutation rate observed in prostate, a tissue believed to be relatively quiescent. Also men in our study are younger than the patient presented by Holstege *et al* (59 and 71 for cases 7 and 6 respectively, compared to 115).

References

1. Holstege, H. *et al.* Somatic mutations found in the healthy blood compartment of a 115yr-old woman demonstrate oligoclonal hematopoiesis. *Genome Res.* **24**, 733–742 (2014).

2. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. *Science* **338**, 1622–1626 (2012).

3. Nussbaum, R., McInnes, R. R. & Willard, H. F. Thompson & Thompson Genetics in Medicine - Robert Nussbaum, Roderick R. McInnes, Huntington F Willard - Google Books. (2007).

4. Mucci, N. R. *et al.* Expression of nuclear antigen Ki-67 in prostate cancer needle biopsy and radical prostatectomy specimens. *J. Natl. Cancer Inst.* **92**, 1941–1942 (2000).

5. Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. *Blood* **117**, 4460–4466 (2011).

6. Ding, Z. *et al.* Estimating telomere length from whole genome sequence data. *Nucleic Acids Res.* **42**, e75 (2014).

REFERENCES FOR SUPPLEMENTARY FIGURES AND TABLES

1. Clark, J. *et al.* Complex patterns of ETS gene alteration arise during cancer development in the human prostate. *Oncogene* **27**, 1993–2003 (2008).

- 2. Nik-Zainal, S. *et al.* The life history of 21 breast cancers. *Cell* **149**, 994–1007 (2012)
- 3. Nik-Zainal, S. *et al.* Mutational processes molding the genomes of 21 breast cancers. *Cell* **149**, 979–993 (2012).
- Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. *Cell Rep* 3, 246–259 (2013).
- 5. Baca, S. C. *et al.* Punctuated evolution of prostate cancer genomes. *Cell* **153**, 666–6 77 (2013).
- 6. Grasso, C. S. *et al.* The mutational landscape of lethal castration-resistant prostate cancer. *Nature* **487**, 239–243 (2012).
- 7. Barbieri, C. E. *et al.* Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. *Nat. Genet.* **44**, 685–689 (2012).