

Figure S1: Correlations between structural complexity and the rates of folding and unfolding at the transition midpoint.

Correlations are shown between for the folding/unfolding rate at the transition midpoint (log $k_f = \log k_u$) for A) ACO and B) LRO. Rates at the transition midpoint are used because the thermodynamic stability is zero allowing for the correction of effects owing to differing stabilities.

			Linear Fit: y	= b + m*x	Pearson Correlation	
Parameter x	Parameter y	Dataset (Size)	m	b	R	P ^a
ACO	$\log k_{f} = \log k_{u}$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.32 -0.40 -0.19 -0.43 -0.52 -0.14 -0.21	3.8 4.7 1.7 4.9 5.9 1.0 2.2	-0.76 -0.80 -0.70 -0.71 -0.86 -0.61 -0.69	8.2x10 ⁻²² 2.0x10 ⁻¹⁷ 2.3x10 ⁻⁶ 3.4x10 ⁻⁶ 4.7x10 ⁻¹¹ 2.2x10 ⁻⁵ 4.6x10 ⁻⁵
LRO	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-1.4 -1.4 -0.98 -1.8 -1.7 -0.85 -1.2	5.1 5.5 3.2 6.0 6.6 2.8 4.6	-0.83 -0.85 -0.71 -0.77 -0.85 -0.61 -0.81	1.9x10 ⁻²⁸ 1.8x10 ⁻²¹ 1.9x10 ⁻⁶ 1.7x10 ⁻⁷ 1.3x10 ⁻¹⁰ 2.3x10 ⁻⁵ 1.4x10 ⁻⁷
RCO	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-3.9 -16 -0.036 27 7.7 12 -19	2.5 4.9 1.1 0.7 0.28 -0.55 5.3	-0.08 -0.34 0.00 0.51 0.15 0.27 -0.56	3.9x10 ^{-1 NS} 2.8x10 ⁻³ 1.0x10 ^{0 NS} 2.4x10 ⁻³ 4.0x10 ^{-1 NS} 8.8x10 ^{-2 NS} 1.7x10 ⁻³
RCO	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.65 -9.2 -1.9 51 39 7.9 -14	-1.6 0.36 -2.3 -4.7 -8.1 -4.1 0.3	0.01 -0.12 -0.02 0.52 0.46 0.14 -0.26	9.3x10 ^{-1 NS} 3.1x10 ^{-1 NS} 9.0x10 ^{-1 NS} 2.0x10 ⁻³ 6.4x10 ⁻³ 3.8x10 ^{-1 NS} 1.7x10 ^{-1 NS}
RCO	log k _f = log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-2.2 -12 -2.1 42 29 4.8 -14	0.024 1.8 -0.87 -2.8 -5.5 -2.0 1.7	-0.04 -0.17 -0.04 0.48 0.38 0.14 -0.39	7.0x10 ^{-1 NS} 1.4x10 ^{-1 NS} 8.1x10 ^{-1 NS} 4.6x10 ⁻³ 2.7x10 ⁻² 4.0x10 ^{-1 NS} 3.9x10 ⁻²
TCD	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-2.8 -5.0 -1.4 2.0 -3.9 0.99 -3.6	4.8 7.6 2.4 2.0 5.8 0.085 6.4	-0.37 -0.65 -0.21 0.19 -0.42 0.14 -0.60	7.5x10 ⁻⁵ 5.6x10 ⁻¹⁰ 2.3x10 ^{-1 NS} 2.9x10 ^{-1 NS} 1.2x10 ⁻² 3.9x10 ^{-1 NS} 6.5x10 ⁻⁴

Table SI. Correlations and linear fits of unfolding and folding rate constants, measures of native structure and thermodynamic stability extended

TCD	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-4.1 -6.7 -2.3 1.4 -2.3 -0.23 -3.8	2.6 6.0 -0.47 -0.39 0.82 -2.8 2.5	-0.35 -0.55 -0.20 0.07 -0.15 -0.03 -0.42	2.4x10 ⁻⁴ 6.1x10 ⁻⁷ 2.4x10 ⁻¹ NS 6.9x10 ⁻¹ NS 3.8x10 ⁻¹ NS 8.7x10 ⁻¹ NS 2.5x10 ⁻²
TCD	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-3.9 -6.4 -1.7 0.037 -3.8 -0.17 -3.5	3.6 6.8 0.43 1.5 3.4 -1.1 3.4	-0.40 -0.59 -0.24 0.00 -0.28 -0.03 -0.55	1.6x10 ⁻⁵ 4.2x10 ⁻⁸ 1.6x10 ^{-1 NS} 1.0x10 ^{0 NS} 1.0x10 ^{-1 NS} 8.5x10 ^{-1 NS} 2.7x10 ⁻³
SRO	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.55 0.66 0.62 -0.85 -0.38 -0.33 0.59	-1.7 -1.9 -3.2 10. 3.6 3.3 -1.6	0.35 0.44 0.40 -0.37 -0.08 -0.11 0.50	2.1x10 ⁻⁴ 8.3x10 ⁻⁵ 1.7x10 ⁻² 3.4x10 ⁻² 6.6x10 ⁻¹ NS 5.0x10 ⁻¹ NS 7.4x10 ⁻³
SRO	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.68 0.68 1.1 -2.5 -2.1 0.83 0.71	-6.0 -5.5 -10. 21 9.8 -8.4 -6.5	0.27 0.28 0.43 -0.57 -0.26 0.22 0.40	4.0x10 ⁻³ 1.5x10 ⁻² 9.1x10 ⁻³ 5.7x10 ⁻³ 1.4x10 ⁻¹ ^{NS} 1.7x10 ⁻¹ ^{NS} 3.6x10 ⁻²
SRO	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.63 0.73 0.67 -2.0 -1.9 0.56 0.63	-4.5 -4.7 -5.8 18 9.5 -4.9 -4.7	0.31 0.35 0.43 -0.53 -0.26 0.23 0.49	1.0x10 ⁻³ 2.6x10 ⁻³ 1.0x10 ⁻² 1.5x10 ⁻³ 1.4x10 ⁻¹ ^{NS} 1.4x10 ⁻¹ ^{NS} 8.0x10 ⁻³
NonLocalCO	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.17 -0.13 -0.19 -0.11 -0.27 -0.14 -0.03	5.2 4.8 5.3 5.4 6.2 4.4 2.9	-0.59 -0.46 -0.74 -0.58 -0.77 -0.53 -0.14	1.1x10 ⁻¹¹ 4.3x10 ⁻⁵ 3.6x10 ⁻⁷ 4.5x10 ⁻⁴ 7.7x10 ⁻⁸ 3.3x10 ⁻⁴ 4.7x10 ⁻¹ NS
NonLocalCO	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.31 -0.32 -0.28 -0.27 -0.45 -0.22 -0.14	4.5 4.7 3.9 5.3 6.0 2.0 0.98	-0.71 -0.69 -0.70 -0.74 -0.79 -0.65 -0.45	7.1x10 ⁻¹⁸ 2.0x10 ⁻¹¹ 3.5x10 ⁻⁶ 6.6x10 ⁻⁷ 3.6x10 ⁻⁸ 3.4x10 ⁻⁶ 1.6x10 ⁻²

NonLocalCO	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.23 -0.25 -0.18 -0.22 -0.42 -0.12 -0.085	4.3 4.7 3.0 5.4 6.4 1.5 1.2	-0.65 -0.62 -0.70 -0.70 -0.81 -0.59 -0.38	$\begin{array}{r} 1.5 \times 10^{-14} \\ 4.5 \times 10^{-9} \\ 2.3 \times 10^{-6} \\ 5.0 \times 10^{-6} \\ 5.3 \times 10^{-9} \\ 5.1 \times 10^{-5} \\ 4.6 \times 10^{-2} \end{array}$
LocalCO	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.28 0.24 0.58 0.12 0.74 0.58 0.50	0.96 1.5 -0.70 2.6 -0.077 -0.12 0.91	0.56 0.57 0.60 0.44 0.66 0.28 0.62	4.5x10 ⁻¹⁰ 1.7x10 ⁻⁷ 1.4x10 ⁻⁴ 1.1x10 ⁻² 2.5x10 ⁻⁵ 8.1x10 ⁻² NS 4.5x10 ⁻⁴
LocalCO	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.47 0.43 0.84 0.27 1.2 0.99 0.78	-3.3 -2.7 -5.1 -1.3 -4.5 -5.2 -3.9	0.60 0.64 0.54 0.54 0.66 0.38 0.63	4.9x10 ⁻¹² 1.6x10 ⁻⁹ 8.8x10 ⁻⁴ 1.3x10 ⁻³ 2.1x10 ⁻⁵ 1.5x10 ⁻² 2.9x10 ⁻³
LocalCO	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	0.42 0.39 0.63 0.26 1.1 0.72 0.62	-1.8 -1.5 -3.0 -0.32 -3.3 -2.9 -2.2	0.65 0.65 0.64 0.57 0.68 0.43 0.71	4.3x10 ⁻¹⁴ 6.0x10 ⁻¹⁰ 3.9x10 ⁻⁵ 4.7x10 ⁻⁴ 8.3x10 ⁻⁶ 4.5x10 ⁻³ 2.4x10 ⁻⁵
Να	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.048 -0.042 -0.050 -0.037 -0.076 -0.041 -0.0089	4.3 4.1 4.3 5.0 4.6 3.6 2.7	-0.64 -0.47 -0.80 -0.72 -0.72 -0.66 -0.17	7.3x10 ⁻¹⁴ 2.4x10 ⁻⁵ 9.0x10 ⁻⁹ 2.2x10 ⁻⁶ 1.8x10 ⁻⁶ 3.3x10 ⁻⁶ 3.9x10 ⁻¹ NS
Να	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.078 -0.094 -0.070 -0.070 -0.15 -0.047 -0.031	2.2 2.7 2.0 3.5 4.1 -0.26 -0.46	-0.68 -0.65 -0.69 -0.72 -0.84 -0.60 -0.39	$\begin{array}{r} 8.4x10^{-16}\\ 3.3x10^{-10}\\ 5.6x10^{-6}\\ 1.8x10^{-6}\\ 4.1x10^{-10}\\ 3.5x10^{-5}\\ 4.0x10^{-2}\\ \end{array}$
Να	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.060 -0.077 -0.046 -0.060 -0.13 -0.029 -0.020	2.6 3.1 1.8 4.0 4.5 0.39 0.33	-0.63 -0.61 -0.71 -0.71 -0.84 -0.58 -0.35	1.8x10 ⁻¹³ 1.1x10 ⁸ 1.9x10 ⁻⁶ 3.3x10 ⁻⁶ 4.2x10 ⁻¹⁰ 6.1x10 ⁻⁵ 6.7x10 ⁻² NS

CC	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	32 27 59 25 28 31 2.8	-16 -13 -32 -11 -15 -16 0.69	0.69 0.61 0.83 0.73 0.73 0.51 0.05	1.7x10 ⁻¹⁶ 9.5x10 ⁻⁹ 9.9x10 ⁻¹⁰ 1.2x10 ⁻⁶ 1.2x10 ⁻⁶ 5.9x10 ⁻⁴ 7.9x10 ⁻¹ NS
СС	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	57 56 83 49 53 44 38	-34 -34 -48 -28 -32 -28 -23	0.78 0.80 0.71 0.75 0.83 0.58 0.48	3.3x10 ⁻²³ 2.4x10 ⁻¹⁷ 1.6x10 ⁻⁶ 5.2x10 ⁻⁷ 1.1x10 ⁻⁹ 6.9x10 ⁻⁵ 9.9x10 ⁻³
CC	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	47 48 57 45 47 26 18	-27 -28 -33 -25 -28 -16 -11	0.78 0.77 0.79 0.78 0.83 0.54 0.32	2.4x10 ⁻²³ 2.5x10 ⁻¹⁵ 2.0x10 ⁻⁸ 7.1x10 ⁻⁸ 1.0x10 ⁻⁹ 2.9x10 ⁻⁴ 9.4x10 ⁻² NS
L	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.024 -0.021 -0.025 -0.018 -0.037 -0.020 -0.0040	4.3 4.1 4.4 5.0 4.6 3.6 2.6	-0.64 -0.46 -0.80 -0.72 -0.70 -0.64 -0.16	1.2x10 ⁻¹³ 3.5x10 ⁻⁵ 7.6x10 ⁻⁹ 2.8x10 ⁻⁶ 3.4x10 ⁻⁶ 6.4x10 ⁻⁶ 4.3x10 ⁻¹ ^{NS}
L	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.093 -0.046 -0.036 -0.035 -0.073 -0.023 -0.015	2.3 2.7 2.2 3.6 4.3 -0.21 -0.44	-0.68 -0.65 -0.69 -0.72 -0.84 -0.60 -0.39	6.7x10 ⁻¹⁶ 4.2x10 ⁻¹⁰ 3.6x10 ⁻⁶ 2.4x10 ⁻⁶ 6.2x10 ⁻¹⁰ 3.5x10 ⁻⁵ 3.8x10 ⁻²
L	log k _f = log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.030 -0.038 -0.023 -0.030 -0.065 -0.014 -0.0098	2.6 3.2 1.9 4.0 4.6 0.43 0.34	-0.64 -0.61 -0.71 -0.71 -0.83 -0.58 -0.35	1.5x10 ⁻¹³ 1.2x10 ⁻⁸ 1.5x10 ⁻⁶ 3.8x10 ⁻⁶ 9.7x10 ⁻¹⁰ 6.4x10 ⁻⁵ 6.5x10 ⁻² NS
L	ΔG _{F-U}	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.021 -0.035 -0.014 -0.023 -0.049 -0.0047 -0.015	-2.7 -1.9 -3.0 -2.0 -0.42 -5.1 -4.2	-0.42 -0.57 -0.29 -0.54 -0.68 -0.10 -0.31	4.6x10 ⁻⁶ 1.2x10 ⁻⁷ 9.5x10 ⁻² ^{NS} 1.2x10 ⁻³ 1.1x10 ⁻⁵ 5.5x10 ⁻¹ ^{NS} 1.1x10 ⁻¹ ^{NS}

L^(2⁄3)	log k _í	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.18 -0.16 -0.20 -0.14 -0.24 -0.15 -0.028	5.7 5.3 6.2 6.0 6.1 4.8 2.8	-0.67 -0.51 -0.81 -0.75 -0.72 -0.64 -0.14	4.1x10 ⁻¹⁵ 3.5x10 ⁻⁶ 3.0x10 ⁻⁹ 6.4x10 ⁻⁷ 1.4x10 ⁻⁶ 6.8x10 ⁻⁶ 4.9x10 ⁻¹ NS
L^(⅔)	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.30 -0.36 -0.28 -0.27 -0.48 -0.18 -0.13	4.7 5.5 4.7 5.7 7.1 1.3 0.74	-0.72 -0.72 -0.71 -0.77 -0.86 -0.60 -0.42	1.3x10 ⁻¹⁸ 8.3x10 ⁻¹³ 2.1x10 ⁻⁶ 2.0x10 ⁻⁷ 1.0x10 ⁻¹⁰ 3.4x10 ⁻⁵ 2.6x10 ⁻²
L^(⅔)	log k _f = log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.24 -0.30 -0.19 -0.24 -0.42 -0.11 -0.081	4.6 5.5 3.6 5.9 7.1 1.4 1.0	-0.69 -0.68 -0.74 -0.76 -0.85 -0.59 -0.37	2.6x10 ⁻¹⁶ 5.5x10 ⁻¹¹ 4.8x10 ⁻⁷ 2.3x10 ⁻⁷ 1.7x10 ⁻¹⁰ 5.5x10 ⁻⁵ 5.5x10 ⁻² NS
L^(⅔)	ΔG _{F-U}	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.17 -0.27 -0.11 -0.18 -0.32 -0.037 -0.14	-1.3 0.23 -2.0 -0.53 1.4 -4.8 -2.8	-0.46 -0.63 -0.29 -0.59 -0.69 -0.10 -0.35	4.2x10 ⁻⁷ 2.4x10 ⁻⁹ 8.8x10 ⁻² ^{NS} 3.2x10 ⁻⁴ 6.2x10 ⁻⁶ 5.4x10 ⁻¹ ^{NS} 6.5x10 ⁻² ^{NS}
L^(½)	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.52 -0.46 -0.61 -0.40 -0.66 -0.46 -0.077	7.0 6.5 7.9 7.0 7.5 6.1 3.0	-0.68 -0.53 -0.82 -0.75 -0.73 -0.64 -0.12	1.1x10 ⁻¹⁵ 1.2x10 ⁻⁶ 2.1x10 ⁻⁹ 3.9x10 ⁻⁷ 9.9x10 ⁻⁷ 7.5x10 ⁻⁶ 5.3x10 ⁻¹ NS
L^(½)	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.89 -1.0 -0.86 -0.80 -1.3 -0.54 -0.40	7.0 8.1 7.2 7.7 9.8 2.8 1.9	-0.74 -0.75 -0.71 -0.79 -0.86 -0.60 -0.43	6.0x10 ⁻²⁰ 4.1x10 ⁻¹⁴ 1.7x10 ⁻⁶ 6.3x10 ⁻⁸ 4.7x10 ⁻¹¹ 3.5x10 ⁻⁵ 2.1x10 ⁻²
L^(1/2)	$\log k_f = \log k_u$	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.70 -0.87 -0.57 -0.70 -1.2 -0.34 -0.25	6.4 7.7 5.3 7.7 9.5 2.3 1.8	-0.71 -0.70 -0.75 -0.79 -0.86 -0.59 -0.37	9.2x10 ⁻¹⁸ 3.9x10 ⁻¹² 2.8x10 ⁻⁷ 5.7x10 ⁻⁸ 7.8x10 ⁻¹¹ 5.3x10 ⁻⁵ 5.1x10 ⁻¹ NS

L^(1/2)	∆G _{F-U}	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-0.50 -0.79 -0.34 -0.54 -0.87 -0.11 -0.44	0.054 2.2 -1.0 0.87 3.2 -4.5 -1.4	-0.48 -0.65 -0.30 -0.61 -0.69 -0.10 -0.37	1.2x10 ⁻⁷ 4.1x10 ⁻¹⁰ 8.5x10 ⁻² NS 1.7x10 ⁻⁴ 5.2x10 ⁻⁶ 5.4x10 ⁻¹ NS 5.0x10 ⁻² NS
log L	log k _f	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-5.7 -4.9 -8.0 -4.3 -6.2 -5.7 -0.69	13 12 18 11 13 13 3.6	-0.69 -0.57 -0.82 -0.75 -0.74 -0.63 -0.09	2.0x10 ⁻¹⁶ 1.4x10 ⁻⁷ 1.4x10 ⁻⁹ 4.3x10 ⁻⁷ 5.5x10 ⁻⁷ 1.2x10 ⁻⁵ 6.6x10 ⁻¹ NS
log L	log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-10 -11 -11 -8.7 -12 -6.8 -5.4	18 20 21 17 21 11 8.6	-0.78 -0.79 -0.72 -0.81 -0.87 -0.60 -0.46	6.5x10 ⁻²³ 6.2x10 ⁻¹⁷ 1.1x10 ⁻⁶ 9.4x10 ⁻⁹ 2.1x10 ⁻¹¹ 4.0x10 ⁻⁵ 1.4x10 ⁻²
log L	log k _f = log k _u	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-8.1 -9.3 -7.6 -7.8 -11 -4.3 -3.2	15 17 15 16 19 7.4 5.6	-0.76 -0.76 -0.77 -0.83 -0.87 -0.59 -0.38	$\begin{array}{c} 1.4 \times 10^{-21} \\ 9.5 \times 10^{-15} \\ 5.9 \times 10^{-8} \\ 3.1 \times 10^{-9} \\ 3.2 \times 10^{-11} \\ 4.9 \times 10^{-5} \\ 4.8 \times 10^{-2} \end{array}$
log L	∆G _{F-U}	Full (108) Two-State (73) Multi-State (35) Alpha (33) Beta (34) Mixed (41) Maxwell (28)	-5.9 -8.3 -4.6 -6.1 -8.0 -1.5 -6.4	6.7 11 4.6 7.5 11 -2.6 6.8	-0.53 -0.69 -0.30 -0.65 -0.70 -0.11 -0.43	4.8x10 ⁻⁹ 1.4x10 ⁻¹¹ 7.6x10 ⁻² NS 3.7x10 ⁻⁵ 5.0x10 ⁻⁶ 5.1x10 ⁻¹ NS 2.4x10 ⁻²

Individual correlations and linear fits are shown for subsets of the data as in Fig. 1. Additionally, values for the commonly used dataset of Maxwell et al. are shown for comparison.

^a two-tailed probability value.

^{NS} Correlation is not significant at the 0.05 level (5.0×10^{-2}) .

 $\Delta G_{F-U} = G_F - G_U = -RT \ln (k_f / k_u)$, where R is the gas constant and T is the absolute temperature in Kelvin, gives the Gibbs free energy of the folded state relative to the unfolded state.

log $k_f = \log k_u$ where the thermodynamic stability of the protein is zero, is used to correct for the possible effects of differing stabilities.

Relative Contact Order (RCO) is calculated as by Plaxco et al. [1].

Absolute Contact Order (ACO) is calculated as by Ivankov et al. [2].

Long Range Order (LRO) is calculated as by Gromiha et al. [3].

Short Range Order (SRO), local contact order (LocalCO), and non-local contact order (NonLocalCO) are calculated as by Zou and Ozkan [4].

Total Contact Distance (TCD) is calculated as by Zhou and Zhou [5].

Clustering Coefficient (CC) is calculated as by Micheletti [6].

 $N\alpha$ was calculated as by Ouyang and Liang [7].

In the case of all of the above parameters the original equations and cutoffs were used, except for definitions of contact, which were all made consistent with ACO by counting a contact between residues when any heavy atoms had a distance < 6.0 Å.

Various dependencies on length were suggested by various works [8-13].

Table SII. Dataset

Protein Name	PDB (residues)	Kinetic State	Class	PDB Length	$\log k_f = \log k_u^a$	log k _f (s ⁻¹) ^a	log k _u (s ⁻¹) ^a	∆G _{F-U} (kcal/mol)	Source
Colicin E7 immunity protein	1AYI	Two	α	85	1.22	3.13	1.00	-2.90	[14]
Telomeric protein DNA- binding domain, human	1BA5	Two	α	49	0.69	2.56	0.52	-2.78	[15]
Immunoglobulin binding B- domain	1BDD (2-59)	Two	α	58	2.52	5.08	1.82	-4.44	[15]
16th domain of brain α- spectrin	1CUN (7-112)	Two	α	106	-0.87	2.08	-2.61	-6.40	[15]
17th domain of brain α- spectrin	1CUN (113-219)	Two	α	107	-1.48	1.48	-3.39	-6.64	[15]
FADD death-domain, human	1E41 (93-192)	Two	α	100	-0.26	2.95	-1.30	-5.81	[15]
Rap1 myb-domain, human	1FEX	Two	α	59	1.69	3.56	1.26	-3.14	[15]
Myb transforming protein	1IDY	Two	α	54	1.35	3.78	0.74	-4.15	[15]
Colicin E9 immunity protein	1IMQ	Two	α	85	-0.61	3.17	-0.83	-5.45	[14]
Trp-Cage Miniprotein	1L2Y	Two	α	20	5.65	5.43	4.99	-0.59	[15]
Lyme disease variable surface antigen	1L8W (29-335)	Two	α	307	-2.04	0.88	-3.68	-6.22	[14]
Lambda repressor	1LMB	Two	α	80	2.26	4.52	1.39	-4.27	[14]
Acyl-coenzyme A binding protein, cow	1NTI	Two	α	86	-0.13	3.04	-1.69	-6.46	[14]
Protein yjbJ	1RYK	Two	α	69	2.78	3.95	1.95	-2.73	[14]
BBA5 mini-protein	1T8J	Two	α	23	5.43	5.12	5.73	0.83	[15]
15th domain of brain alpha- spectrin	1U5P	Two	α	110	1.74	4.78	0.13	-6.34	[15]
Villin Headpiece	1VII	Two	α	36	4.60	4.08	2.30	-2.43	[16]
Dihydrolipolysine acetyltransferase, <i>G.</i> <i>stearothermophilu</i> s	1W4G	Тwo	α	45	2.52	4.44	1.30	-4.28	[17]
Dihydrolipolysine succinyltransferase, <i>E. coli</i>	1W4H	Two	α	45	4.00	5.11	3.78	-1.82	[17]
Pyruvate dehydrogenase E2, <i>P. aerophilum</i>	1W4J	Two	α	51	3.26	5.32	2.74	-3.52	[17]
<i>de novo</i> designed 3-helix bundle	2A3D	Two	α	73	5.39	5.30	3.30	-2.73	[16]
Peripheral subunit-binding domain, Dihydrolipoamide acetyltransferase	2PDD	Тwo	α	42	4.26	4.26	2.35	-2.61	[18]

E3-binding domain of BBL	2WXC	Two	α	47	3.47	4.86	2.87	-2.73	[15]
Cold shock protein, <i>B.</i> caldolyticus	1C9O	Two	β	66	0.09	3.13	-0.17	-4.50	[15]
Cold shock protein, <i>B. subtilus</i>	1CSP	Two	β	67	1.17	2.82	1.00	-2.49	[15]
Formin Binding Protein 28	1E0L	Two	β	37	4.00	4.60	3.73	-1.18	[15]
WW prototype	1E0M	Two	β	37	3.34	3.87	3.08	-1.07	[15]
9th fibronectin domain	1FNF	Two	β	90	-0.96	-0.39	-1.26	-1.18	[15]
Cold shock protein, <i>T. maritima</i>	1G6P	Two	β	66	-1.13	2.74	-1.74	-6.10	[15]
Hisactophilin	1HCD	Two	β	117	-2.82	1.35	-4.69	-8.23	[19]
sso7d	1JIC	Two	β	62	0.26	3.04	-1.39	-6.04	[15]
Abp1 SH3 domain	1JO8	Two	β	58	-0.91	1.09	-1.17	-3.08	[14]
Fibronectin type III WL-12 chitinase A1	1K85 (559-644)	Two	β	86	-1.65	0.61	-3.04	-4.98	[15]
E2 component alpha-ketoacid dehydrogenase	1K8M	Two	β	87	-2.04	-0.39	-3.39	-4.09	[15]
Yes kinase-associated protein	1K9Q (5-44)	Two	β	40	3.04	3.65	2.91	-1.01	[15]
Internalin B SH3 domain	1M9S (391-466)	Two	β	76	0.04	1.74	-0.74	-3.38	[14]
Cold shock protein, E. coli	1MJC	Two	β	69	0.69	2.30	0.61	-2.31	[15]
Beta-hairpin	1PGB (41-56)	Two	β	16	5.21	5.21	5.21	0.00	[15]
PinWW	1PIN (6-39)	Two	β	34	3.95	4.04	1.82	-3.02	[15]
PI3 SH3 domain	1PNJ	Two	β	84	-2.08	-0.43	-3.17	-3.73	[15]
Oncoprotein p13mtcp1	1QTU (1-109)	Two	β	109	-3.69	0.00	-4.78	-6.52	[15]
Fyn SH3 domain	1SHF	Two	β	59	-0.87	2.13	-1.87	-5.45	[14]
Spectrin SH3 domain	1SHG	Two	β	57	-1.61	0.48	-2.08	-3.50	[14]
Src SH3 domain	1SRL	Two	β	56	0.17	1.91	-0.56	-3.38	[14]
Fibronectin type III tenascin	1TEN	Two	β	89	-1.91	0.48	-3.34	-5.21	[15]
18th module of muscle protein twitchin	1WIT	Two	β	93	-2.56	0.17	-3.56	-5.09	[15]
Sho1 SH3 domain	2VKN	Two	β	66	-0.35	0.92	-1.08	-2.73	[14]
Symfoil1	3049	Two	β	123	-3.08	0.74	-3.91	-6.34	[20]
Symfoil4P	304D	Two	β	123	-4.69	2.13	-5.99	-11.08	[20]

ThreeFoil	3PG0	Two	β	140	-7.43	-3.87	-8.95	-6.93	[21]
Muscle acylphosphatase	1APS	Two	αβ	98	-3.17	-0.69	-3.91	-4.38	[14]
C-terminal domain of protein L9	1DIV (58-149)	Two	αβ	92	-1.91	1.43	-3.43	-6.64	[14]
N-terminal domain of protein L9	1DIV (1-56)	Two	αβ	56	0.83	2.87	0.00	-3.90	[14]
LysM Domain	1E0G	Two	αβ	48	1.61	3.04	1.02	-2.75	[15]
FK506 binding protein	1FKB	Two	αβ	107	-2.26	0.69	-3.52	-5.75	[14]
Apoflavodoxin, <i>Anabaena</i>	1FTG	Two	αβ	168	-0.09	1.22	-1.17	-3.26	[15]
Tm1083	1J5U	Two	αβ	123	-0.39	2.97	-2.28	-7.17	[14]
Chemotaxis protein CheW	1K0S	Two	αβ	143	-2.17	3.21	-5.25	-11.55	[14]
Cyclophilin A	1LOP	Two	αβ	164	-1.30	2.87	-4.52	-10.07	[15]
Ribosomal protein L23	1N88	Two	αβ	96	-1.04	0.87	-1.69	-3.50	[14]
ADAh2	106X	Two	αβ	81	0.65	2.95	-0.17	-4.27	[14]
B1 domain of protein G	1PGB	Two	αβ	56	-0.17	2.74	-0.74	-4.74	[14]
Histidine containing phosphocarrier protein	1POH	Two	αβ	85	-1.30	1.17	-2.69	-5.27	[15]
C-terminal domain of spore coat protein S	1PRS (91-173)	Two	αβ	83	-3.52	-0.87	-4.04	-4.32	[15]
N-terminal domain spore coat protein S	1PRS (1-90)	Two	αβ	90	-2.00	1.30	-4.08	-7.35	[15]
Ras binding domain	1RFA	Two	αβ	78	-0.09	3.65	-1.22	-6.64	[14]
Ribosomal protein S6	1RIS	Two	αβ	97	-1.69	2.65	-3.60	-8.53	[14]
Src SH2 domain	1SPR	Two	αβ	103	-0.61	3.78	-1.52	-7.23	[14]
Ubiquitin	1UBQ	Two	αβ	76	-0.65	3.17	-2.95	-8.35	[14]
Spliceosomal protein U1A	1URN	Two	αβ	96	-0.17	2.01	-5.09	-9.68	[14]
Common-type acylphosphatase	2ACY	Two	αβ	98	-1.91	0.35	-2.82	-4.32	[15]
Chymotrypsin inhibitor 2	2CI2	Two	αβ	64	-1.52	2.52	-4.47	-9.54	[14]
B1 domain of Protein L	2PTL (18-77)	Two	αβ	60	-0.61	1.78	-1.43	-4.38	[14]
Pit1 homeodomain	1AU7 (103-160)	Multi	α	58	3.21	4.21	2.08	-2.90	[15]
FKBP-Rapamycin binding domain	1AUE	Multi	α	92	-1.04	2.61	-2.35	-6.75	[15]
p19ink4d CDK inhibitor	1BD8	Multi	α	156	-0.83	1.26	-1.00	-3.08	[15]

Engrailed homeodomain	1ENH	Multi	α	54	3.52	4.56	3.30	-1.72	[15]
Acyl-coenzyme A binding protein, yeast	1ST7	Multi	α	86	-0.17	3.69	2.78	-1.24	[15]
FF domain, human hypa	1UZC	Multi	α	69	1.00	3.30	0.61	-3.67	[15]
Tumour suppressor protein p16	2A5E (9-156)	Multi	α	148	0.17	1.52	0.09	-1.95	[15]
Phage 434 cro protein	2CRO	Multi	α	64	0.13	1.61	-0.22	-2.49	[15]
T4 lysozyme	2LZM	Multi	α	164	-2.48	1.78	-6.08	-10.72	[15]
Myotrophin	2MYO	Multi	α	118	-0.13	2.04	-1.39	-4.68	[15]
Ileal lipid binding protein	1EAL	Multi	β	127	-1.22	0.56	-2.13	-3.67	[15]
Intestinal fatty acid binding protein	1IFC	Multi	β	131	-1.22	1.48	-2.00	-4.74	[15]
FGF-1	1JQZ	Multi	β	136	-2.87	0.56	-3.08	-4.98	[20]
Cellular retinol binding protein II	10PA	Multi	β	133	-2.17	0.61	-4.00	-6.28	[15]
Barnase	1RNB	Multi	β	109	-1.87	1.13	-3.95	-6.93	[15]
Titin IG repeat 27	1TIU	Multi	β	89	-3.00	1.56	-3.30	-6.64	[15]
10th type III fibronectin domain	1TTF	Multi	β	94	-0.22	2.39	-3.65	-8.23	[15]
Apical domain of GroEL	1AON (191-345)	Multi	αβ	155	-1.48	-0.65	-2.48	-2.49	[15]
Third PDZ domain from PSD- 95	1BFE	Multi	αβ	110	-0.09	1.30	-1.48	-3.79	[15]
Barstar	1BTA	Multi	αβ	89	-0.61	1.48	-1.17	-3.61	[15]
Cellular retinoic acid binding protein I	1CBI	Multi	αβ	136	-2.91	-1.39	-4.26	-3.91	[15]
PDZ2 domain from PTP-BL	1GM1	Multi	αβ	94	-0.52	0.35	-1.00	-1.84	[15]
Hydrogenase maturation protein	1GXT	Multi	αβ	88	-0.35	1.91	-2.95	-6.64	[15]
Indole-3-glycerolphosphate synthase	1IGS (27-248)	Multi	αβ	222	-3.87	-2.00	-5.91	-5.33	[15]
Staphylococcal nuclease	1JOO	Multi	αβ	149	-2.30	1.00	-3.65	-6.34	[15]
C-terminal domain of phosphoglycerate kinase	1PHP (176-394)	Multi	αβ	219	-2.21	-1.69	-4.69	-4.09	[15]
N-terminal domain of phosphoglycerate kinase	1PHP (1-175)	Multi	αβ	175	-0.56	1.00	-1.82	-3.85	[15]
Trp-Synthase α -subunit	1QOP (Chain A)	Multi	αβ	265	-2.48	-1.09	-3.87	-3.79	[15]
Dihydrofolate reductase	1RA9	Multi	αβ	159	-2.26	-1.39	-2.65	-1.72	[15]

Cell-cycle regulatory protein p13suc1	1SCE	Multi	αβ	97	-0.43	1.82	-2.65	-6.10	[15]
Carbonic anhydrase	1V9E	Multi	αβ	259	-4.60	-1.82	-10.42	-11.73	[15]
Ribonuclease H1, E. coli	2RN2	Multi	αβ	155	-2.00	0.04	-5.21	-7.17	[15]
Villin 14T	2VIK	Multi	αβ	126	-0.69	2.17	-1.78	-5.39	[15]
Chemotactic protein	3CHY	Multi	αβ	128	-0.56	0.43	-1.91	-3.20	[15]
Ribonuclease H1, C. tepidum	3H08	Multi	αβ	139	-1.74	0.83	-6.08	-9.42	[15]
Average (# proteins) Full (108) Two-State (74) Multi-State (34) Alpha (33) Beta (34) Mixed (41) ^b Maxwell (28) ^c					-0.28 0.02 -1.06 1.54 -0.83 -1.30 -0.54	2.00 2.42 1.08 3.50 1.54 1.17 2.27	-1.50 -1.03 -2.50 0.68 -1.78 -3.01 -1.81	-4.77 -4.71 -4.89 -3.84 -4.53 -5.71 -5.56	
Min (# proteins) Full (108) Two-State (74) Multi-State (34) Alpha (33) Beta (34) Mixed (41) ^b Maxwell (28) ^c					-7.43 -7.43 -4.60 -2.48 -7.43 -4.06 -3.17	-3.87 -3.87 -2.00 0.88 -3.87 -2.00 -0.69	-10.42 -8.95 -10.42 -6.08 -8.95 -10.42 -5.23	-11.73 -11.55 -11.73 -10.72 -11.08 -11.73 -11.55	
Max (# proteins) Full (108) Two-State (74) Multi-State (34) Alpha (33) Beta (34) Mixed (41) ^b Maxwell (28) ^c					5.65 5.65 3.52 5.65 5.21 1.61 2.78	5.43 5.43 4.56 5.43 5.21 3.78 4.52	5.73 5.73 3.30 5.73 5.21 1.02 1.95	0.83 0.83 -1.24 0.83 0.00 -1.72 -2.73	
Standard Deviation (# protein Full (108) Two-State (74) Multi-State (34) Alpha (33) Beta (34) Mixed (41) ^b Maxwell (28) ^c	s)				2.40 2.60 1.66 2.27 2.59 1.29 1.32	1.88 1.83 1.66 1.36 1.75 1.63 1.23	2.92 2.92 2.69 2.59 2.90 2.05 1.85	2.53 2.52 2.58 2.25 2.42 2.57 2.37	

^a all values refer to 25 °C

^b Mixed refers to the $\alpha\beta$ structure class. ^c the set "Maxwell" is listed as source "[14]". log k_f = log k_u is the experimentally determined mid-transition (denaturation midpoint) folding (equal to unfolding)

rate, where the thermodynamic stability of the protein is zero. $\Delta G_{F-U} = G_F - G_U = -RT \ln (k_f / k_u)$, where R is the gas constant and T is the absolute temperature in Kelvin (298.15), gives the Gibbs free energy of the folded state relative to the unfolded state.

Protein	Number of Mutations	Average Change in $k_f(x-fold)^a$	Average Change in $k_u (y-fold)^a$	Relative change (y-fold / x-fold)
Muscle AcP	22	3.16	8.12	2.57
FKBP12	34	2.25	29.64	13.18
L23	17	2.03	104.11	51.35
CTL9	24	3.98	131.22	33.00
α-spectrin SH3 (D48G)	14	5.12	13.45	2.63
CI2	65	3.32	65.21	19.64
Src-SH3	54	2.79	9.22	3.30
Protein L	68	1.75	44.83	25.60
Fyn-SH3	34	7.01	26.90	3.84
bACBP	30	3.54	134.25	37.89
Ubiquitin	27	4.41	232.79	52.75
Protein G	31	2.87	14.97	5.22
ADA2h	18	1.78	4.70	2.64
NTL9	24	1.94	18.48	9.54
sso7d	20	2.15	7.19	3.35
CspB	21	3.01	7.89	2.62
lm9	25	12.32	83.70	6.80
cyt b562	39	2.82	173.39	61.59
уАСВР	18	5.28	161.14	30.54
FBP28 WW	45	1.40	2.83	2.02
E3DB (F166W)	22	3.30	16.80	5.08
BdpA (Y15W)	45	2.84	12.97	4.57
BdpA (N29H,Q33W)	20	1.70	9.32	5.49
BpdA (E48W)	20	2.35	6.39	2.72
POB (L146A, Y166W)	22	3.37	6.99	2.07
Per Protein Average ^b	25	3.46	53.06	15.34
Per Mutation Average ^c	759	3.30	52.58	15.95

Table SIII. Single Mutation Effects on Folding and Unfolding Rates

^a change is calculated as $e^{|\ln k_{wt} - \ln k_{mut}|}$. Thus, a two-fold slower rate or two-fold faster rate for the mutant would both be a 2.0 fold change in rate. Reported values are the average across all mutations for that protein. ^b average across the dataset weighting each protein equally. ^c average across the dataset weighting each mutation equally.

It should be noted that the vast majority of mutations in the dataset [22] are simple truncation mutations and hence, the relationships shown may not be representative of a more general set of mutations.

References: Supplementary Information

1. Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277:985–94.

2. Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein A V (2003) Contact order revisited: influence of protein size on the folding rate. Protein Sci. 12:2057–62.

3. Gromiha MM, Selvaraj S (2001) Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction. J. Mol. Biol. 310:27–32.

4. Zou T, Ozkan SB (2011) Local and non-local native topologies reveal the underlying folding landscape of proteins. Phys. Biol. 8:066011.

5. Zhou H, Zhou Y (2002) Folding rate prediction using total contact distance. Biophys. J. 82:458–63.

6. Micheletti C (2003) Prediction of folding rates and transition-state placement from native-state geometry. Proteins 51:74–84.

7. Ouyang Z, Liang J (2008) Predicting protein folding rates from geometric contact and amino acid sequence. Protein Sci. 17:1256–63.

8. Gutin A, Abkevich V, Shakhnovich E (1996) Chain Length Scaling of Protein Folding Time. Phys. Rev. Lett. 77:5433–5436.

9. Koga N, Takada S (2001) Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J. Mol. Biol. 313:171–80.

10. Kouza M, Li MS, O'brien EP, Hu C-K, Thirumalai D (2006) Effect of finite size on cooperativity and rates of protein folding. J. Phys. Chem. A 110:671–6.

11. Lane TJ, Pande VS (2013) Inferring the rate-length law of protein folding. PLoS One 8:e78606.

12. Naganathan AN, Muñoz V (2005) Scaling of folding times with protein size. J. Am. Chem. Soc. 127:480–1.

13. Wolynes PG (1997) Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. U. S. A. 94:6170–5.

14. Maxwell KL, Wildes D, Zarrine-Afsar A, De Los Rios MA, Brown AG, Friel CT, Hedberg L, Horng J-C, Bona D, Miller EJ, et al. (2005) Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci. 14:602–16.

15. Garbuzynskiy SO, Ivankov DN, Bogatyreva NS, Finkelstein A V (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. U. S. A. 110:147–50.

16. Bogatyreva NS, Osypov AA, Ivankov DN (2009) KineticDB: a database of protein folding kinetics. Nucleic Acids Res. 37:D342–6.

17. Ferguson N, Sharpe TD, Schartau PJ, Sato S, Allen MD, Johnson CM, Rutherford TJ, Fersht AR (2005) Ultra-fast barrier-limited folding in the peripheral subunit-binding domain family. J. Mol. Biol. 353:427–46.

18. Spector S, Raleigh DP (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol. 293:763–8.

19. Smith MTJ, Meissner J, Esmonde S, Wong HJ, Meiering EM (2010) Energetics and mechanisms of folding and flipping the myristoyl switch in the {beta}-trefoil protein, hisactophilin. Proc. Natl. Acad. Sci. U. S. A. 107:20952–7.

20. Lee J, Blaber SI, Dubey VK, Blaber M (2011) A polypeptide "building block" for the β -trefoil fold identified by "top-down symmetric deconstruction". J. Mol. Biol. 407:744–63.

21. Kinetic data for ThreeFoil to be published separately

22. Naganathan AN, Muñoz V (2005) Scaling of folding times with protein size. J. Am. Chem. Soc. 127:480–1.