Table S1. Bacterium strains of Escherichia coli, Photorhabdus luninescens and Xenorhabdus stockiae

Strain	Genome type	References or sources
GB2005	F <i>-mc</i> rA ∆(<i>mrr-hsd</i> RMS- <i>mcr</i> BC) φ80/acZ∆M15 ∆/acX74 recA1 endA1 araD139 ∆(ara, leu)7697 ga/U ga/K λ rpsL nupG fhuA::IS2 recET phage T1-resistent (<i>E. coli</i>)	(1)
GB05-dir	GB2005, araC-BAD-ΕΤγΑ (<i>E. coli</i>)	(2)
GB08-red	GB2005, araC-BAD-γβαA, ΔlacZ (<i>E. coli</i>)	(1)
P. luminescens TT01	Wild type strain of Photorhabdus luminescens	(3)
1210-promoter	P _{tet} insertion for expression of gene cluster plu1210-1222 in <i>P. luminescens</i> , KmR	This study
3123-promoter	P _{tet} insertion for expression of gene cluster plu3123 in <i>P. luminescens</i> , KmR	This study
3263-promoter	P _{tet} insertion for expression of gene cluster plu3263 in <i>P. luminescens</i> , GentaR	This study
2670-promoter	P _{tet} insertion for expression of gene cluster plu2670 in <i>P. luminescens</i> , GentaR	This study
X. stockiae	Wild type strain of Xenorhabdus stockiae	Hunan, China
253-promoter	P _{tet} insertion for expression of gene cluster Xe253 in X. stockiae, KmR	This study

Table S2. Expression plasmids and PCR template

Plasmid	Characteristics	References or sources
pSC101-BAD-g-amp	redy under BAD promoter	(2)
pSC101-BAD-35-g-amp	<i>plu2935</i> and <i>redγ</i> under BAD promoter	This study
pSC101-BAD-35-36-g-amp	plu2935/plu2936 and redy under BAD promoter	This study
pSC101-BAD-35-36-amp	plu2935/plu2936 under BAD promoter	This study
pSC101-BAD-35-36-37-g-amp	<i>plu2935/plu2936/plu2937</i> and <i>redγ</i> under BAD promoter	This study
pSC101-BAD-34-35-36-g-amp	<i>plu2934/plu2935/plu2936</i> and <i>redγ</i> under BAD promoter	This study
pSC101-BAD-34-35-36-amp	plu2934/plu2935/plu2936 under BAD promoter	This study
pSC101-BAD-34-35-36-37-g-amp	plu2934/plu2935/plu2936/plu2937 and redy under BAD promoter	This study
pSC101-BAD-ETg-amp	$recET$ and $red\gamma$ under BAD promoter	(2)
pSC101-BAD-gba-amp	<i>Red</i> γβα under BAD promoter	(2)
pSC101-lox71-kanR-lox66-Ptet-GFP	GFP under Ptet, PCR templates to amplify lox71-kanR-lox66-Ptet (plasmid DNA digested with Aval and BamHI)	This study
pR6K-Tps-gentaR-tetR-T7RP	PCR templates to amplify lox71- gentaR-lox66-Ptet	This study
P15A-cm	A 2 kb plasmid with 15A rorigin of replication and chloramphenicol resistence marker	(2)

Table S3. Oligonucleotides

Gene	Primers	5' - 3'		
plu2935	ex plu2935-5	TCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGGAGGAACAGCTGATGAGCACAGCAGTACAAAA		
	ex plu2935-3	lu2935-3 <u>GGGGTTAGTGAATGCTTTTGCTTGATCTCAGTATTAATATCCAT</u> GGTGAATTCCTCCTAGATCTTTATGATGCCTTT TTCCTTA		
n/w2025_2026	ex-plu2935-2936-5	TCACCCGCCGAATTAACAGA	Everación placmid	
piu2935-2936	ex plu2935-2936-3	plu2935-2936-3 <u>GCTTGATCTCAGTTTCAGTATTAATATCCATGGTGAATTCCTCCTAGATC</u> TTCATTTCCATTGATCGCCAA		
plu2024 2026	plu34-36-amp-5	ACGAATCATTAAATGAAATCGGCTTCAAATTTGGCGATCAATGGAAATGACAGCTGTCAGAAGAACTCGTCAAGAA		
plu2934-2936	plu34-36-amp-3	CTTGATCTCAGTTTCAGTATTAATATCCATGGTGAATTCCTCCTGATATCAGCTGGCTTGCAGTGGGCTTACAT	Expression plasmid	
n/w2025 2027	plu35-37-amp-5		Expression plasmid	
plu2935-2937	plu35-37-amp-3	GTCTTGAGCGGGTTGATGATTTCATAAACTTTTTGTACTGCTGTGCTCATCAGCTGCTTGCAGTGGGCTTACAT		
	pluT-5	CTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGCAGGAGGAATTCACTATGAACCCATATGCAGTTTATGAT		
plu2934-2937	pluT-3	<u>GGGGTTAGTGAATGCTTTTGCTTGATCTCAGTTTCAGTATTAATATCCAT</u> GGTGAATTCCTCCTGATATCTCACCTCAC	Expression plasmid	
kanR gene	Tem-km-5	GCGGTAGTTTATCACATACCGTTCGTATAATGTATGCTATACGAAGTTATGCTTGCAGTGGGCTTACAT		
	Tem-km-3	AATAAAAAAGGGGACCTCTAGGGTCCCCAATTAATTAGTAATATAATCTA	PUR lemplale	
GFP	eGFP-5	GAGAAAAGTGAAATGAATAGTTCGACAAAAATCTAGCAGGAGGAATTCATATGACCATGATTACGCATCA		
	eGFP-3	AGCGGTATCATCAACAGGCTTACCCGTCTTACTGTCTAGACTCGAGAAGCTTACTTGTACAGCTCGTCCA	PCR template	
plu1210	1210-5	TAACTTTGGAAAATGAATGACGTAGGCAGTTTAGCTAATCCATTTTAAAT		
	1210-3	GAATACAGTGTGATCTCACTATTTGGAGAGCAAATCGTGTAAGGTAGCATATGAATTCCTCCTGCTAGAT	insertion promoter	

Gene	Primers	5' - 3'	Application	
plu3123	3123-5	ATTGGTGATGGTTGTCAGAAATGACAGTTTTCAAATTTCTAACAGATTCGTAATGCGGTAGTTTATCACA	Insertion	
	3123-3 AGGAGTTCAGCTTTAAAATCACTTCCTGCTTGAGCGATGCTATCTTTCATATGAATTCCTCCTGCTAGAT		promoter	
xe253	253-5	TGATTTTTTATATTTTAGAGAGAAAAAGTCAAAGAGAGAG	Insertion	
	253-3	<u>GGGAAACGGCAAGATATTCCCACAATAGCAATTTTGTCTCTGTCATGCAT</u> ATGAATTCCTCCTGCTAGAT	promoter	
plu2670	PGenta2670-5	CCGCTTGGGATAAGTGGGGCAAAAATAAAAAAACACTTGTGATGATTGCTAAGAATGATAGTTGCCAAATATCTA		
		TGAATTACATTCCCAACCG	Insertion	
	PGenta2670-3	TATATTTTCTGATGTCTGAGAGAGAAGTTCGGCTTTAAGGATACTTTCCGCTTTTTTAGTAATGCTATCTTTCAT	promoter	
		GCCTCTTCTCTATCACTGA		
plu3263	3263PtetGen-5	TCTTGGGGGGAAGGAAGAAGGGCAAAACATTTGTGATGACTGTTGAGAATGACAGTTTTCAAATAACTAAC		
	52001 let0en-5	TGAATTACATTCCCAACCG	Insertion	
	3263PtetGen-3	ACCGACCTTGTTTGACAGTACTTGCACTAATCCAGCATCAAAGATAATTTCCTTTTTAGCCATGCTATCTTTCATTTAGT	promoter	
		GCCTCTTCTCTATCACTGA		

The homology arms are underlined.

Table S4. Sequence alignment between *E. coli* RecBCD and

Plu0632/Plu0630/Plu0633

	Size (aa)	Identities	Positives	Gaps
RecB	1180	693/1185 (58%)	889/1185 (75%)	19/1185 (1%)
Plu0632	1202			
RecC	1122	675/1131 (60%)	852/1131 (75%)	11/1131 (0%)
Plu0630	1129			
RecD	608	344/609 (56%)	427/609 (70%)	10/609 (1%)
Plu0633	618			

Results from NCBI blastp (protein-protein BLAST) using default parameters.

Figure S1. Functional test of the P_{tet} inducible promoter in *P. luminescens* and *X. stockiae.* (A) Schematic presentation of GFP reporter under the P_{tet} promoter in a pSC101 plasmid. The plasmid is for function test of the P_{tet} promoter and PCR template of the 2 kb lox71-kanR-lox66- P_{tet} cassette. (B) The pSC101-lox71-kanR-lox61- P_{tet} -GFP was transformed into *P. luminescens* and *X. stockiae* for function test. Negative controls were set up for both *P. luminescens* and *X. stockiae*, which are wild type strains without the GFP reporter plasmid (N). The number 1 and 2 were *P. luminescens* and *X. stockiae* harbouring the pSC101-lox71-kanR-lox66- P_{tet} -GFP plasmid, with addition of anhydrotetracycline (AHT+) or without addition of anhydrotetracycline (AHT-).

Figure S2. Transformation efficiency test of *E. coli* and *P. luminescens*.

The pACYC177 plasmid (New England BioLabs) was used for transformation. The plasmid is a 3.9-kb ampicillin and kanamycin-resistant cloning vector with the p15A origin of replication. Fresh 1.4ml cultures were used to prepare electrocompetent cells and 200 ng of the plasmid DNA was introduced by electroporation. The cells were flushed out with 1 ml LB from the cuvette into a fresh tube to start the recovery for 1 hour. (**A**) The cultures were streaked on the LB agar plate with ampicillin and kanamycin and colony numbers were counted to determine transformants. (**B**) The cultures were streaked on LB agar plate without any antibiotic to determine total surviving colonies. (**C**) The transformation efficiency is presented as the ratio of transformants to survivors.

Figure S3. MS isotope patterns resulting from feeding isotope-labeled L-leucine, L-valine and L-threonine to *P. luminescens* mutant (*plu2670*-promoter) strain after anhydrotetracycline (AHT) induction. Incorporation of labeled precursors is proven by characteristic mass shifts of the isotope patterns of (A) 742.58 m/z, (B) 843.61 m/z, and (C) 942.67 m/z. All feedings were performed in standard LB medium (LB) supplemented with 500 mg/L of labeled precursor. (D) Summary of the amino acids compositions for each compound based on the observed m/z shifts upon incorporation of labeled precursors.

Figure S4. MS/MS spectrum analysis of the three compounds. CID-spectrum of 742.58 m/z peak 1 (A), 843.61 m/z peak 2 (B) and 942.67 m/z peak 3 (C). The y-ions are labeled with dashed/dotted lines and b-ions with dotted lines. Residues between adjacent y_n and b_n -ions are labeled with the amino acid (one letter code) and the m/z deviation of this particular amino acid shift.

Table S5. Phage proteins used in various bacteria for recombineering

Species	Classification	5'-3' exonuclease	ssDNA annealing protein	Host exonulease inhibitor	Reference
Escherichia coli	Gram-negative	RecE (E. coli)	RecT (E. coli)	Red γ (phage λ)	(4)
Escherichia coli	Gram-negative	Red α (phage λ)	Red $β$ (phage $λ$)	$Red\gamma$ (phage λ)	(5)
Salmonella enterica	Gram-negative	Red α (phage λ)	Red β (phage $λ$)	Red γ (phage λ)	(6)
Yersinia pseudotuberculosis	Gram-negative	Red α (phage λ)	Red β (phage $λ$)	Red γ (phage λ)	(7)
Shigella	Gram-negative	Red α (phage λ)	Red β (phage $λ$)	Red γ (phage λ)	(8)
Mycobacterium tuberculosis	Gram-positive	Gp60 (phage Che9c)	Gp61 (phage Che9c)	-	(9)
Pseudomonas syringae	Gram-negative	RecE _{Psy} (<i>P. syringae</i>)	RecT _{Psy} (P. syringae)	-	(10)
Lactococcus lactis	Gram-positive	-	RecTI (L. reuteri)	-	(11)
Lactococcus reuteri	Gram-positive	-	RecTI (L. reuteri)	-	(11)
Agrobacterium tumefaciens	Gram-negative	Red α (phage λ)	Red $β$ (phage $λ$)	$Red\gamma$ (phage λ)	(12)
Clostridium acetobutylicum	Gram-positive	-	Cpf0939 (C. perfringens)	-	(13)
Photorhabdus luminescens	Gram-negative	Pluα (P. luminescens)	Pluβ (<i>P. luminescens</i>)	Pluγ (<i>P. luminescens</i>)	This study
Xenorhabdus stockiae	Gram-negative	Pluα (P. luminescens)	Pluβ (<i>P. luminescens</i>)	Pluγ (P. luminescens)	This study

Reference:

- Fu, J., Teucher, M., Anastassiadis, K., Skarnes, W., Stewart, A.F. (2010) A Recombineering Pipeline to Make Conditional Targeting Constructs. *Methods Enzymol.*, 477, 125-144.
- Fu, J., Bian, X., Hu, S., Wang, H., Huang, F., Seibert, P.M., Plaza, A., Xia, L., Müller, R., Stewart, A.F. *et al.* (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. *Nature Biotechnology*, 30, 440-446.
- Tang, Z., Zhang, Y., Stewart, A.F., Geng, M., Tang, X., Tu, Q. and Yin, Y. (2010) High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in *Photorhabdus luminescens*. *Protein Expression and Purification*, **73**, 132-139.
- 4. Zhang, Y., Buchholz, F., Muyrers, J.P.P. and Stewart, A.F. (1998) A new logic for DNA engineering using recombination in *Escherichia coli*. *Nature Genetics*, **20**, 123-128.
- 5. Zhang, Y., Muyrers, J.P.P., Testa, G. and Stewart, A.F. (2000) DNA cloning by homologous recombination in *Escherichia coli*. *Nature Biotechnology*, **18**, 1314-1317.
- Bunny, K., Liu, J. and Roth, J. (2002) Phenotypes of *lexA* mutations in *Salmonella* enterica: evidence for a lethal *lexA* null phenotype due to the Fels-2 prophage. *Journal of bacteriology*, 184, 6235-6249.
- Derbise, A., Lesic, B., Dacheux, D., Ghigo, J.M. and Carniel, E. (2003) A rapid and simple method for inactivating chromosomal genes in *Yersinia*. *FEMS Immunology & Medical Microbiology*, 38, 113-116.
- Ranallo, R.T., Barnoy, S., Thakkar, S., Urick, T. and Venkatesan, M.M. (2006) Developing live *Shigella* vaccines using λ Red recombineering. *FEMS Immunology & Medical Microbiology*, 47, 462-469.
- Van Kessel, J.C. and Hatfull, G.F. (2006) Recombineering in *Mycobacterium tuberculosis*. *Nature Methods*, 4, 147-152.

- Swingle, B., Bao, Z., Markel, E., Chambers, A. and Cartinhour, S. (2010) Recombineering using RecTE from *Pseudomonas syringae*. *Applied and environmental microbiology*, **76**, 4960-4968.
- 11. van Pijkeren, J.-P. and Britton, R.A. (2012) High efficiency recombineering in *lactic acid* bacteria. *Nucleic acids research*, **40**, e76.
- 12. Hu, S., Fu, J., Huang, F., Ding, X., Stewart, A.F., Xia, L. and Zhang, Y. (2013) Genome engineering of *Agrobacterium tumefaciens* using the *lambda* Red recombination system. *Applied microbiology and biotechnology*, **98**, 1-8.
- Dong, H., Tao, W., Gong, F., Li, Y. and Zhang, Y. (2013) A functional *rec*T gene for recombineering of *Clostridium. Journal of biotechnology*, **173**, 65-67.