Supplementary Material

High-resolution crystal structure of Z-DNA in complex with Cr³⁺ cations

Pawel Drozdzal^a, Miroslaw Gilski^{a,b}, Ryszard Kierzek^b, Lechoslaw Lomozik^a, Mariusz Jaskolski^{*a,b}

^a Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland ^b Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

Supplementary Table S1. Data collection and refinement statistics for the $d(CGCGCG)_2-Cr^{3+}$ structure (unmerged Bijvoetr pairs).

Resolution (Å) –	Number of r	eflections	Completeness	R_{merge}	<1/σ1>	R-meas ^(a)	Anomalous CC ^(b) (%)	
	observed	unique	(70)	(70)		(70)		
4.35	1158	291	98.3	1.3	97.98	1.5	73	
3.08	2382	547	98.9	1.3	95.82	1.4	58	
2.51	3947	707	100.0	1.4	96.92	1.6	64	
2.18	3939	855	99.9	1.6	81.97	1.8	69	
1.95	3259	941	99.2	1.7	64.04	2.0	53	
1.78	2956	1044	98.2	1.7	53.82	2.1	45	
1.64	2767	1131	98.3	1.8	45.94	2.3	37	
1.54	2818	1222	98.6	1.8	38.90	2.4	40	
1.45	2976	1300	98.3	2.4	30.80	3.1	29	
1.38	3153	1376	98.7	3.4	24.11	4.4	24	
1.31	3271	1435	99.3	4.3	19.97	5.6	13	
1.26	3439	1531	99.0	4.6	17.68	5.9	11	
1.21	3563	1578	99.8	6.6	12.87	8.6	10	
1.16	3701	1667	99.6	7.1	12.05	9.3	7	
1.12	3811	1718	99.6	8.9	9.54	11.5	16	
1.09	3902	1776	99.2	11.9	7.26	15.4	9	
1.06	3935	1804	98.6	16.9	5.17	21.9	3	
1.03	4055	1876	98.0	22.1	3.91	28.8	-2	
1.00	4013	1869	97.5	33.4	2.64	43.4	2	
0.97	3987	1867	93.2	43.2	2.05	56.5	8	
total	67032	26535	98.4	1.6	24.85	1.9	17	

(a) Redundancy independent R-factor (intensities) [1].

(b) Correlation coefficient between two random subsets of anomalous intensity differences [1].

$d(CGCGCG)_2$ in the Cr^{3+} complex													
Angle	C1(I)	C3(I)	C5(I)	C7	C9(I)	C11(I)	G2(I)	G4(I)	G6	G8(I)	G10(I)	G12	
8	CI(II)	C3(II)	C5(II)		C9(II)	C11(II)	G2(II)	G4(II)		G8(11)	G10(II)		
α	-	158(8) 160(10)	171(6) 158(5)	-	-150(3)	171(9) 177(8)	62(18) 74(18)	71(15)	84(3)	61(2)	67.7(9)	84(1)	
		$\frac{-100(10)}{151(16)}$	$\frac{-138(3)}{140(3)}$		-132(2)	$\frac{-1}{145(1)}$	-174(10)	170(10)					
β	-	-120(22)	-126(3)	-	153(6)	-136(6)	-174(12) -175(12)	174(26)	-179(1)	-176(1)	-168.7(7)	-177.6(9)	
	40(5)	62(31)	52(3)	15(0)	61(3)	51(2)	-166(10)	176(11)	150(0)	1 = 0 (1)	1.55.4(0)		
γ	49(5)	51(38)	63(3)	45(2)	56(6)	72(4)	163(11)	176(35)	-170(2)	178(1)	-177.4(9)	-173(1)	
8	147(7)	138(21)	145(1)	1.42(2)	151(1)	127 4(0)	93(5)	95(14)	152(2)	93(3)	88(2)	151(1)	
0	143(8)	136(26)	143(1)	143(2)	131(1)	137.4(9)	95(6)	92(30)	132(2)	89(5)	96(8)	131(1)	
	-88(8)	-94(21)	07(1)	0.4(2)	-98(1)	-99.2(9)	-167(4)	-174(6)	-	-105(4)	-174(3)		
3	-102(6)	-93(27)	-97(1)	-94(2)			-136(3)	-104(11)		173(8)	-112(14)	-	
4	70(11)	76(14)	(5(2))	70(2)	78(1)	61.6(9)	59(6)	62(9)	-	-78(4)	75(3)		
5	⁵ 87(11)	64(21)	05(2)	/9(2)			-55(4)	-74(14)		73(11)	-55(18)	-	
~	154(1)	-156.4(7) -15	156 8(8)	-153.5(8)	-160.7(7)	-153.2(9)	50(15)	60(2)	70(1)	55(2)	56(1)	70(1)	
χ	-134(1)		-130.8(8)				66(5)	00(2)					
ν0	-25(3)	-25(14)	-27(1)	-30(2)	-24(1)	-34(1)	-7(9)	-4(2)	-23(1)	-5(2)	-8(1)	-22(1)	
	-0(0)	-36(18)	8) -7(1)	50(2)	- (-)	- (-)	2(5)	.(=)	(-)	0(1)	0(1)	(1)	
v1	37(3)	35(12)	39(2)	37(2)	39(1)	41(1)	-9(8)	-11(2)	37(2)	-10(2)	-10(1)	37(1)	
	()	44(11)		(-)	()	()	-13(4)		()	()		. /	
ν2	-36(3)	-31(20)	-35(1)	-31(2)	-38(1)	-32(1)	19(6)	20(3)	-35(2)	20(2)	22(1)	-38(1)	
		-35(20)			()		18(5)					()	
v3	23(3)	18(25) 15(29)	20(1)	15(2)	24.2(9)	12(1)	-24(4)	-23(2)	22(2)	-23(1)	-28(1)	26(1)	
		$\frac{13(27)}{4(24)}$					20(6)						
ν4	1(3)	12(28)	4(1)	10(2)	-0.1(9)	13(1)	10(6)	17(2)	0(2)	18(1)	22(1)	-3(1)	
Pseudorotation parameters:													
D	1(0,(0))	155.0(6)	156.0(0)	1.47(1)	1(10(4)	142.0(0)	35.3(9)	26.000	1(1)	20.2(0)	24.6(7)	166.0(7)	
P 16	160.6(8)	145(1) 156.0(9)	147(1)	161.9(4)	143.2(6)	12.6(3)	26.8(6)	161.4(7)	30.2(6)	34.6(7)	166.3(7)		
τ	39 2(5)	35.5(4)	5(4) 393(6)	37 7(7)	40 5(3)	40 8(4)	24.2(4)	23 2(2)	38 2(5)	23 6(2)	27.6(3)	39 6(5)	
<i>c</i> _m	57.2(5)	43.9(7)	57.5(0)	51.1(1)	40.5(3)	40.0(4)	18.9(1)	23.2(2)	50.2(5)	23.0(2)	27.0(3)	57.0(5)	
Sugar	C2'-endo	C2'-endo	C2'-endo	C2'-endo	C2'-endo	C1'-exo	C3'-endo	C3'-endo	C2'-endo	C3'-endo	C3'-endo	C2'-endo	
pucker 22 chuo		C2'-endo	<i>c_ c</i>	C2 Chuo	C2 Chuo	01 0.00	C3'-endo	<i>cs ca</i> 0	C2 Chu0	C5 Chub	C5 Chub	22 0.140	

Supplementary Table S2. Sugar and phosphate backbone torsion angles for the $d(CGCGCG)_2-Cr^{3+}$ structure, with standard uncertainties in parentheses.

Table 3 footnote:

All numerical values in the table are in degrees. The furanose pseudorotation amplitude (τ_m) and phase angle (*P*) as well as their deviations (values in parentheses) from the ideal (cyclopentane) model were calculated by the method of Jaskolski [2]. The upper/bottom values refer to conformation I/II of the DNA chain in the d(CGCGCG)₂–Cr³⁺ structure. Angle definiton: α : O3'(*n*1)-P-O5'-C5' β : P-O5'-C5'-C4', γ : O5'-C5'-C4'-C3', δ : C5'-C4'-C3'-O3', ϵ : C4'-C3'-O3'-P(*n*+1)-O5'(*n*+1), χ : O4'-C1'-N1-C2 (pyrimidines), O4'-C1'-N9-C4 (purines).

Supplementary Table S3. Average base-pair and local base-pair step helical parameters for selected Z-DNA structures in complex with d-block metal cations identified by their PDB codes in parentheses.

	Helical twist $\Omega_h(^\circ)$	Helical rise (Å)	Inclination η (°)	Tip (°)	Tilt (°)	Roll (°)	Shift (Å)	Slide (Å)	Rise (Å)
$\frac{d(CGCGCG)_2 - Cr^{3+}}{(4r15)^a}$	-60.94 -60.43	3.52 3.63	4.33 4.03	0.19 1.06	-0.40 -0.27	-1.56 -1.70	-0.02 -0.03	3.07 3.04	3.52 3.51
d(CGCGCG) ₂ –Spk–Mn ²⁺ (4hig)	-58.99	4.50	17.45	5.23	0.71	-3.10	-0.07	2.79	3.45
d(CGCGCG) ₂ –Spk–Zn ²⁺ (4hif)	-60.93	4.11	15.64	0.47	-0.03	-2.45	-0.14	2.87	3.52
d(CACGCG):d(CGCGTG)-Mn ²⁺ (3fq5) ^b	-58.72 -60.10	3.99 3.94	11.45 7.94	-12.58 -12.42	-0.76 -0.81	-1.46 -1.85	-0.02 -0.03	2.77 2.91	3.62 3.69
d(CACGCG):d(CGCGTG)-Mn ²⁺ (4dwy) ^b	-57.75 -59.34	3.64 4.08	3.64 18.94	-1.38 -8.19	-0.81 0.08	-1.52 -1.78	-0.04 0.03	2.82 3.00	3.54 3.63
d(CACGCG):d(CGCGTG)-Mn ²⁺ (4dy8)	-62.37	2.90	2.38	-14.51	-0.23	-2.01	-0.20	2.89	3.48
d(CGCGCG) ₂ -Cu ²⁺ (1d39)	-60.45	4.08	8.48	-1.48	0.04	-2.67	0.02	2.85	3.55

(a) Upper/bottom values refer to two alternate conformations present for the duplex in the asymmetric unit.

(b) Upper/bottom values refer to two duplexes present in the asymmetric unit.

REFERENCES

- 1 Kabsch W (2010) Acta Cryst D 66:125–132
- 2 Jaskolski M (1984) Acta Cryst D 40:364–366