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I. Supplementary methods - Model estimation 

To estimate the free parameters of the three computational models, we applied a 

Bayesian hierarchical approach (Kruschke, 2011) implemented with the OpenBugs software 

(Lunn et al., 2009) and the BRugs package (Thomas et al., 2006) in R (R Development Core 

Team, 2011). All three models provide a point estimate for the posterior probability that one 

stock is better than the other stock. To compare the model predictions �� (see Equation 3) with 

the observed probability judgments of the participants, we first transformed the observed 

probabilities using a logit transformation. We then assumed a normal distributed error (��) 

around �� for each participant n as an additional free parameter. The model parameters for the 

��ℎ participant (�0�, ��� and ��) were sampled from group distributions, whereas the 

parameters of these group distributions were sampled from higher order distributions. In our 

hierarchical model, explicit prior assumptions were specified at the top of the hierarchical 

model only, as all the downstream parameters were connected to the overarching values. The 

model parameters of interest for the ��ℎ individual (that is,	�
� and 	���) were sampled from 

normal (group) distributions with means 
� and 
0 and precisions �� and �0 (where SD = 

1/√�). The means 
� and 
0 were sampled from normal hyperparameter distributions with a 

prior mean of μ� = 1 and a precision �� = 0.01 for all 
� and μ0 = 0 and �0 = 0.01 for 
0 

(notice that the chosen prior means μ� and μ0	represent the normative solution). The 

precisions �� and �0 were sampled from gamma distributions with Shape = 0.1 and Rate = 
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0.1. As prior distribution for the error component �� we defined a gamma distribution with 

parameters S and R, which were also sampled from hyperparameter distributions (see 

Kruschke (2011, p.443) for a detailed description). For an efficient estimation process, we 

used a thinning factor of 100 and an initial burn-in of 10,000. All final Markov chains had a 

length of 100,000. 

Model comparison 

To compare the models we estimated the Deviance Information Criterion (DIC) for all 

three computational models. The DIC is especially suited to hierarchical models, as it takes 

the goodness-of-fit and the effective number of free parameters into account. The model with 

the lowest DIC should predict a replicate data set best (Spiegelhalter et al., 2002). 

Additionally, we compared the FM with the SM on the individual level via approximate 

Bayes factors based on the best fitting parameters (modes of the marginal posterior 

distributions) using the Bayesian Information Criterion (see Raftery, 1995; Wagenmakers, 

2007). 

Functional imaging data acquisition 

Functional MRI was performed with ascending slice acquisition using a T2*-weighted 

echo-planar imaging sequence using a 3T Siemens Magnetom Verio whole-body MR unit 

equipped with a 12-channel head coil; 40 axial slices; volume repetition time (TR), 2.28 s; 

echo time (TE), 30 ms; 80° flip angle; slice thickness, 3.0 mm; field of view (FoV) read, 228 

mm; slice matrix 76×76. For structural MRI, we acquired a T1-weighted MP-RAGE sequence 

(176 sagittal slices; volume TR, 2.0 s; TE, 3.37 ms; 8° flip angle; slice matrix 256×256; slice 

thickness, 1.0 mm; no gap; FoV, 256 mm). We preprocessed the fMRI data using SPM8 

(Wellcome Trust Center for Neuroimaging, University College London). We applied a slice 

time correction using the middle image as reference. Preprocessing was continued with spatial 
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realignment to correct for head movement. T1 images were then co-registered to the mean 

functional image created in the previous step. This image was segmented into grey matter, 

white matter, and cerebrospinal fluid (CSF). In a next step, the data were normalized 

according to the Montreal Neurological Institute (MNI) template and smoothed with a 

Gaussian smoothing kernel (FWHM = 8 mm). The start of the experimental paradigm was 

triggered by the 7
th
 scanner pulse to account for magnetization equilibration and previous 

scans were excluded from the final analysis. 

II. Supplementary behavioural results - Control Study 

The standard informational cascades paradigm implies a fixed order of social followed 

by private information. However, due to the fixed order of the presented information, it could 

have been that a different weight assigned to the private information simply represented an 

order effect in which the last piece of information is given larger weight (e.g., Hogarth & 

Einhorn, 1992). Therefore, in order to examine whether indeed the last piece of information 

was given larger weight, we conducted a control study in which we had an additional 

condition in which only private information was presented. Seventeen participants (mean age 

= 21.6 years, ± 1.7 SD, 20-25 years, 6 females) participated in this additional behavioral study 

that consisted of 60 trials with 8 filler trials, 26 standard trials (social information I, social 

information II and private information; similar to the fMRI study) and 26 control trials 

(private information I, private information II and private information III). To explore a 

potential order effect, we compared the standard and control trials with each other by 

estimating the SM model. This enabled us to examine whether private information is 

weighted differently as compared to social information or whether simply the last piece of 

information is given larger weight than the preceding information. 

The analysis of the standard trials replicated the behavioral results of the fMRI study: 

A clear trend towards overweighting of private information was observed, 
�����
� - 
������ , 
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mode = 0.165, 95% HDI = -0.0316 – 0.394. Importantly, the analysis of the control trials 

(consisting of private information only) did not show overweighting of the last private 

information at the end of the trial: The marginal posterior for 
�����
�	��� (private information 

III; mode = 0.748, 95% HDI = 0.615-0.873) could not be credibly differentiated from the 

marginal posterior for 
�����
�	���� (private information I & II, mode = 0.746, 95% HDI of 

0.609-0.876), as indicated by the 95% HDI for the contrast 
�����
�	��� - 
�����
�	����, mode = 

-0.005, 95% HDI = -0.189-0.18. The results of the control study, in particular the control 

condition, showed that the last piece of information is not overweighted due to a recency 

effect and no order effect was observed. Thus, we can conclude that the larger weight given to 

private information as compared to social information in the fMRI study was due to the 

private versus social character of the information. 

III. Supplementary fMRI results - The effect of subjective uncertainty during decision 

making 

The probability judgments (i.e. subjective posterior probabilities) provided by the 

participants are a very direct measure of subjective uncertainty. Additionally, we analyzed the 

effect of subjective uncertainty on brain activity during decision making (decision time-

window). At the end of each trial, participants made a probability judgment about their 

decision. We found that increased subjective uncertainty activated the bilateral fronto-parietal 

network, the left fronto-insular cortex and the dorsomedial prefrontal cortex (DMPFC) (Fig. 

S1 and Table S1). Thus, the brain areas involved into the belief updating by private 

information were also engaged into the final decision-making process. 
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Figure S1. Neural correlates of subjective uncertainty during decision making. The decision-

related activity of the anterior insular, parietal and frontal cortices increased with increasing 

subjective uncertainty. 

Note: P < 0.001, uncorrected with a minimum cluster size of 20 voxels. 
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Table S1. Neural correlates of subjective uncertainty during decision making 

 MNI centroid  

Region x y z No. of Voxel  Z value 

Dorsomedial Prefrontal Cortex (DMPFC) 

 

12 23 37 1368 4.74 

Cerebellum 

 

33 -61 -29 279 4.72 

Inferior Frontal Gyrus / Precentral Gyrus 

 

-48 41 1 644 4.65 

Cerebellum 

 

-27 -58 -32 647 4.51 

Middle Temporal Gyrus 57 -40 1 110 4.31 

Inferior Parietal Lobule 51 -46 22 146 4.24 

Superior Temporal Gyrus -54 -49 19 77 4.13 

Superior Frontal Gyrus -18 56 31 41 4.00 

Thalamus 9 -13 13 24 3.89 

Precuneus 3 -58 43 32 3.68 

Inferior Parietal Lobule -42 -52 43 76 3.63 

Note: P < 0.001, uncorrected with a minimum cluster size of 20 voxels. 




