Online Appendix A - Calculation of relative recurrence risk

The Concept

The relative recurrence risk is a relative measure of recurrences of disease in relatives conditional of earlier
disease has been diagnosed in the family. As such it can be used as a measure of family clustering of
disease. The relative recurrence risk may be define as a ratio of two hazards /1,»//1[ where

A = probability of disease recurrence among relatives with a diseased proband
Aj = probability of disease among relatives with no diseased proband

Thus, the relative recurrence is simply a special case of a relative risk but where the exposure is the
existence of disease in a relative. This allows us to estimate the relative recurrence risk by usual tools and
models for relative risk estimation including logistic regression or Cox regression. Since we have access to
detailed date of onset data we are utilizing this by fitting Cox regression.

In this study we are only considering sibling and cousin relations. In this appendix | only refer to siblings but
the interpretation for cousins and possibly other family relations should be straightforward.

Calculations and Statistical Model

For the estimation we are fitting Cox regression models using the years from cohort entry as time scale and
using the hazard ratios from the Cox regression to estimate the relative recurrence risk risk.

The hazard being the instantaneous risk of ASD diagnosis, that is, the probability of ASD diagnosis at time t
(years from cohort entry). With T indicating the random time point of ASD diagnosis this can be written as

Alt1=Pr(T=t|T=1) j=12,...

and the Cox regression can be written as /ll.(t)Z/Io (tJ ¢*” where A is called the baseline hazard, a non-
negative function of time of arbitrary and unspecified shape. The hazard ratio of two subjects with fixed
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when no ASD diagnosis. The estimation assumes the relative risk (hazard ratio) is constant for all time
points. This assumption is important since it allow us to remove the arbitrarily shaped baseline hazard from
the comparison of exposed and non-exposed.

In our study, the units (subjects) entering the calculations are the sibling pairs in each family. Each pair
consist of a child and his sibling proband. Furthermore, instead of considering each child as exposed or not
exposed we allow each child to be unexposed up to the point when his proband is observed with an ASD
diagnosis. The exposure is time-varying.

The eFigure 1 and eFigure 2 below illustrate how siblings enter the calculations for four different families.
The eFigure 1 illustrate the siblings ordered (x-axis) by increasing birth year and the eFigure 2 show how
these siblings are represented as sibling-pairs in the calculations. For each family, all pair wise sibling-pairs
are included where each pair contribute with information how one sibling proband is exposing and affecting
another sibling (in his family).

Thus, for the top left family (eFigurel) the first sibling is born 1992 but he do not contribute with any
information about risk carried over from a sibling until his sibling is born in 1994. Now, for this family, there
are two sibling pairs contributing to the calculations (eFigure2). The youngest sibling is included as being
exposed by his older sibling from age 0 up to age 12, in the figure's indicated as pair (2, 1), and the older
sibling is also included as being exposed by his younger sibling starting from age 2 up to age 14, in the
figure's indicated as pair (1,2). Since none of these siblings experience an ASD diagnosis they will only
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contribute with information about the baseline risk.

The bottom left family (eFigurel) do not contribute with any information since the oldest sibling is censored
(dead or emigrated) before the second sibling is born and the exposure status is not known. However, if
sibling 1 had been observed with an ASD diagnosis before being censored the sibling pair (1,2) would have
contributed to the calculations; but sibling pair (2,1) would still not have contributed.

The bottom right family have three children born 1992, 1995 and 1997 (eFigurel). This family will
contribute with six sibling pairs (eFigure2) as each sibling can be considered exposed by each of his siblings.
From 1995 sibling pairs (1,2) and (2,1) will contribute with information in the calculations of RR and from
1997 the sibling pairs (3,1) and (3,1) and (3,2) and (2,3) will contribute.

Including all pairwise combinations of siblings will have an averaging effect. Each sibling pair will enter the
statistical model and the RR is calculated as the RR averaged over all the sibling pairs. Alternatively, one can
consider the pairs in the family as repeated measures similar to a clinical trial with different patients
contributing with different number of repeated visits or different number of blood pressure measurements.

The 'standard' Cox model assumes independence between subject. When experimental units are naturally
or artificially clustered, failure times of siblings within a cluster are correlated. In the calculations we adjust
for this by using a robust sandwich covariance matrix estimate (the Huber Sandwich estimator) to account
for the within-family dependence’ . The sandwich estimator is robust in the sense that the shape of the
correlation matrix does not have to be specified”.

While some earlier studies have calculated the relative recurrence risk using logistic regression?? our
approach is using time to event analysis which better adjust for length of follow-up where individuals
followed for longer time are assumed to have higher risk than individual observed only for a short time. By
adjusting for length of follow-up possible biases can be avoided and is expected to have a higher precision.
Other studies have also used time to event analysis to calculate the RR* . Earlier studies have also been done
with the additional assumptions that only younger siblings are being exposed, that is, the younger sibling
become at risk for ASD when an older sibling has been diagnosed as ASD** . Here we relax this assumption
and allow any sibling to expose or be exposed by any other sibling. We do this by considering all time-
overlapping pairwise combinations of siblings. This come with some advantages:

1. We gain power since we can utilize more events and longer follow-up

2. The measure is less restrictive since it does not need any assumption about ages between siblings.
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As a comparison we also calculated the RR where each sibling entering the calculations only once per family
and conditioning on the older sibling exposing the later born only. We obtained the following estimates:

Older Sibling Exposing Younger  Using all pair wise sibling pairs | yariance

Family type RR (95% Cl) Robust SE RR (95% ClI) Robust SE Ratio
Full siblings 11.9 (10.6-13.3) 0.0576 10.3 (9.4-11.3) 0.0469 1.23
Maternal half siblings 3.3(2.5-4.5) 0.1544 3.2(2.6-4.2) 0.1245 1.24
Paternal half siblings 3.5(2.6-4.7) 0.1573 2.9(2.2-3.7) 0.1335 1.18
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Figures - Representation of sibling-pairs
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eFigurel  Families of siblings. Example of families with siblings on calendar scale from cohort
entry (solid dot) to cohort exit (death, emigration, ASD diagnosis or 31-December-
2006, arrow). Sibling obtaining ASD diagnosis is marked with blue star.

3(6) 5 Mar 2014



Online Appendix A - Calculation of relative recurrence risk
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Sibling pairs from families in eFigure 1b as represented in the statistical analysis. Pair
(1,2) represent sibling 1 exposing sibling 2 and (2,1) represent sibling 2 exposing
sibling 1. Example of families with siblings on calendar scale from cohort entry (solid
dot) to cohort exit (death/emigration or 31-December-2006, arrow).

eFigure 2

Creating families family types
This section describes how the family types and subjects are defined for this study.

A diagnosis of ASD is only available from 1987 in the Swedish registers. Consequently we included all
Swedish born children between 01-Jan-1982 and 31-Dec-2006 with at least one sibling. For these children
essentially all parents and grandparents are known. Full siblings are siblings with the same mother and
father while half-siblings share the same mother or father. Children in a half-sibling family can have siblings
in full-sibling families. Twins status was found in the Swedish twin register. In the last step, using
grandparents and parents id we defined cousins. In full-, half- and cousin-families with both a twin birth and
a singleton birth the twins are allowed to expose a singleton sibling but not reversed.
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Examples

In the example below the calculations are illustrated using R code. Software is available from
http://cran.r-project.org/.

Example 1. Data representation

The families shown in eFigure 2 are represented with the follow data structure to allow calculation of the
relative recurrence risk using Cox regression.

Family Sibling Entry Exit Exposed Event

ID Pair (Age) (Age) (Y/N) (Y/N)
1 2,1 2 12 0 0
1 1,2 0 12 0 0
2 2,1 2 5 0 0
2 2,1 5 12 1 0
2 1,2 0 3 0 1
4 2,1 3 7 0 1
4 3,1 5 7 0 1
4 1,2 0 4 0 0
4 1,2 4 8 1 0
4 3,2 3 8 0 0
4 1,3 0 2 0 0
4 1,3 2 9 1 0
4 2,3 0 6 0 0

Example 2. Cox regression

Below a Cox regression model is fitted for a sample with 10,000 rows and 46 events to calculate the RR
using the R software.

library(survival); #-- Call the survival package

coxph(Surv(entry, exit, event==1) ~ asd + cluster(famid), data=A)

Call:

coxph(formula = Surv(entry, exit, event == 1) ~ asd.exp + cluster(famid),
data = A, method = "breslow")

coef exp(coef) se(coef) robust se z p
asd.expl 3.4 29.8 0.725 0.713 4.76 1.9e-06

Likelihood ratio test=9.62 on 1 df, p=0.00192 n= 10000, number of events= 46

The relative recurrence risk is obtained from exp(coef) above, RR=29.8. The model standard error is 0.725
and the robust standard error, adjusting for the within-family dependencies between sibling-pairs, is 0.713.

Example 3. Number of siblings in families

Below is an example showing how family size is adjusted for in the statistical model. We multiply the
number of siblings in the families in previous example with 6. Instead of having families with 2, 3 or 4
members we now have 12, 18 or 24, each member in the families replicated six times. Using the robust
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standard error in family clusters the RR and the standard error is unchanged. Note however how the model
standard error is now considerably lower, 0.362, and deflated due to the dependent sibling-pairs.

#-- Replicate the earlier dataset 6 times
B = rbind(A,A,A,A)

#-- Run the code from example 1 but on the new dataset
coxph(Surv(entry, exit, event==1) ~ asd.exp + cluster(famid), data=B)

Call:
coxph(formula = Surv(entry, exit, event == 1) ~ asd.exp + cluster(famid),
data = B, method = "breslow")

coef exp(coef) se(coef) robust se z p
asd.expl 3.4 29.8 0.362 0.713 4.76 1.9e-06

Likelihood ratio test=38.5 on 1 df, p=5.51e-10 n= 40000, number of events= 184

The point estimate, RR, remains the same 'exp(coef)' = 29.8. The confidence interval obtained from treating
families as clusters in the family also remain unchanged.
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The classical twin design

Heritability is the proportion of total variation of a disease phenotype that can be attributed to genetic
sources. Historically data from twins and 'twin-models' have been standard approach for calculating
heritability. These methods utilize the relation between monozygotic (MZ) and dizygotic (DZ) twins. The MZ
twins in a pair are assumed to share 100% of their co-segregating genes while DZ twins are assumed to
share 50%. Further, MZ and DZ twin pairs are assumed to be equally affected by shared environmental
experiences, known as the equal environments assumption. From these assumptions it is possible to infer
how much of the variation in a phenotype that may be attributed to genetic and environmental sources.*

Rational of using extended sibling design

In the current study the fraction variance explained by genetic sources (heritability) and environmental
sources were estimated using an extended sibling design, an extension of the classical twin design™. In this
design, additional to MZ and DZ twins, we included full siblings and maternal and paternal half siblings.
Non-twin siblings were included in the analyses to increase power and make results more generalizable;
they also allowed us to estimate both additive and dominance genetic sources of variance simultaneously
as shared and non-shared environmental sources of variance.

Liability-threshold approach

For analyses of the binary outcome we employed the liability-threshold approach, much similar to probit
regression. In this approach each individual is assumed to have a liability of having the disease which is
distributed as the standard normal distribution, if the liability is above an estimated threshold we observe a
1 (individual has the disease), else a 0 is observed (individual does not have the disease). This may be
written as

@(1-PlY=1]=1,

where @ s the distribution function of the standard normal distribution, P|Y =1] is the probability of
observing a 1 in the outcome, and T is the threshold. We may further include fixed and random effects
into the model;

®(1—-P(Y,=1Vx;, z;)|=t+x; B+z. b,

where k is a subject number, X, isa vector of covariates, Z, is a design vector for random effects, /2 is
a vector of regression coefficients, and & is a vector of random effects. In the current study X, includes
birth periods and gender, and the genetic and environmental sources of variance are defined as random
effects and captured by by Z; and & .

Similarity in liabilities for disease

To test whether the liabilities for disease was similar between sibling order in a pair, and between sibling
types, we performed a series of tests for both outcomes separately. We first fitted a saturated model, where
we adjusted the liability of having the disease for birth period effects and for gender effects, these
parameters were assumed to be the same regardless of sibling order and sibling type throughout the
analyses. The liability of having the disease, adjusted for birth period and gender, was estimated separately
for each sibling type as well as for sibling 1 and sibling 2 in sibling pairs (Model 1). We then fitted a model
where the liability was assumed to be the same within each sibling type, regardless of order in a pair
(Model 2). Finally a model where all individuals were assumed to have the same liability was fitted (Model
3). In eTable B1 the results for ASD are shown, and in eTable B2 the results for AD are shown. For both
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outcomes the order in pairs did not affect the liability of having the outcome, the liability was, however,
different for the different sibling types. Therefore we allowed the liability to be different in different types of
siblings when estimating the fraction of the variance explained by genetic and environmental sources.

eTable B1: Likelihood ratio tests for similarity of liability for ASD.

Estimated Difference in Minus 2 log le.ference in
Model arameters degree of likelihood minus 2 log p-value #

P freedom likelihood

1: Saturated model 20 NA 143,903.2 NA NA

2: Equal liability for sibling 15 5 143,909.7 6.50 0.261

1 and 2 in pairs

3: Equal liabilities for all 8 12 145,699.9 1,796.7 <0.001

different sibling types

NA, not applicable. #: p-value test if model fit better than the saturated model HO: models equal Ha: model

fit better

eTable B2: Likelihood ratio tests for similarity of liability for AD.

Estimated Difference in Minus 2 log le.ference in
Model arameters degree of likelihood minus 2 log p-value #
P freedom likelihood
1: Saturated model 20 NA 64,583.8 NA NA
2: Equal.llabl!lty for sibling 15 5 64,584.5 0.71 0.983
1 and 2 in pairs
3: Equal liabilities for all 8 12 65,123.7 539.9 <0.001
different sibling types

NA, not applicable. #: p-value test if model fit better than the saturated model HO: models equal Ha: model

fit better

Estimating sources of variance

The extended sibling design was used to decompose the variance in liability into additive genetic factors (A)
reflecting additive effects of different alleles, non-additive genetic factors (D) reflecting interaction effects
between alleles at the same gene locus, shared environmental factors (C) reflecting non-genetic influences
that contribute to similarity within pairs of siblings and non-shared environmental factors (E) reflecting
experiences that make sibling pairs dissimilar®. The notation of A, D, C and E for the different components
follow the standard notation in twin modelling.

MZ twins were assumed to share 100% of their A in a pair, DZ twins and full siblings were assumed to share
50% of their A, and maternal and paternal half siblings were assumed to share 25% of A in a pair.
Furthermore we assumed that all sibling types included shared the C-parameter in pairs, except paternal
half siblings since children tend to be living with their mother while growing up. We also assumed shared D,
100% between MZ twins, 25% between DZ twins and full siblings, and not shared between half siblings. We
allowed for different liabilities of the outcome in the different sibling types, and adjusted the liability for
gender and birth period.

The A, D, C, and E was treated as random effect and assumed to be normally distributed. The regression
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equations for sibling pair I may thus be written as
. o o
o(1-P(Y ;=1 o T,4+x, B+ A4,+D,+C +E,
@(1-P(Y ,=1|) T 4% B+ A+ Dyt C it By
where sub index 71 refers to sibling 1 and 72 to sibling 2. Let &€ 4; be the assumed amount of shared A,

g be the assumed amount of shared D, and 77; be the assumed amount of shared C, all for sibling pair
I, The random effects can thus be stated as

' 2
A; e {0 g, £40,
, 5 8
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2 2 2 2
The variance sources contributes to the total variance within any individual with ¢, , 6, , 6+ ,and G,

respectively. Since we are using the distribution function of the standard normal distribution the variance is
1, and therefore the sum of the contributions to the variance must be 1. Thus, the fraction of the total

2 2 2 2
variance explained by each variance source are the estimated values for ¢, 6, , ¢ ,and o .

Heritability

The fraction of variation in a phenotype attributable to genotypic variance is referred to as the broad sense
heritability. In the ADCE model J,.Z,+Oi; is the total modelled variation due to genes, we refer to this as
broad sense heritability. In contrast, the fraction of variation explained by additive genetic source of
variance, cr,z; , is known as the narrow sense heritability?. In table 2 of the main manuscript both narrow
and broad sense heritability have been calculated, with 95% profile likelihood confidence intervals.

Model fitting

We fitted a model including all potential sources of variance in a model, the ADCE model. We then fitted
models excluding parameters; we compared the ACE, ADE and DCE models with the full ADCE model using
likelihood ratio tests. Next, sub-models where the genetic parameters, shared environmental parameter,
and both these parameters are dropped (AE, DE,CE, and E models), were tested to explain the observed
data and pattern of variance using as few parameters as possible. Since E, the non-shared environment
source contains random error, it was not excluded in any model. These tests, and estimates of A, D, Cand E
fractions of variance in liability, and their confidence intervals, are shown in the main manuscript, table 2.
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Software

For model fitting we used likelihood based techniques, as implemented in the library OpenMx? in the
software R.* OpenMx allows for use of the liability-threshold approach, and for inclusion of multiple groups
where co-variation between subjects vary; in our case the five different types of siblings. Given the
assumptions, encoded as different co-variation between siblings pairs in the different groups, the software
finds the solution for all the modeled parameters which maximizes the likelihood of observing the data.
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