Supplementary Information

Emergence of double-dome superconductivity in ammoniated metal-doped FeSe

Masanari Izumi¹, Lu Zheng¹, Yusuke Sakai¹, Hidenori Goto¹, Masafumi Sakata^{1,2,3,4}, Yuki Nakamoto⁴, Huyen L. T. Nguyen^{1,2}, Tomoko Kagayama⁴, Katsuya Shimizu⁴, Shingo Araki⁵, Tatsuo C. Kobayashi⁵, Takashi Kambe⁵, Dachun Gu⁶, Jing Guo⁶, Jing Liu⁷, Yanchun Li⁷, Liling Sun⁶, Kosmas Prassides^{3,8}, and Yoshihiro Kubozono^{1,2*}

¹Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan ²Research Centre of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan

³Department of Chemistry, University of Durham, Durham DH1 3LE, UK

⁴Centre for Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531, Japan

⁵Department of Physics, Okayama University, Okayama 700-8530, Japan

⁶Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Science, Beijing 100190, China

⁷Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China ⁸WPI Research Centre, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Table of Contents

- 1) R T plots of the first (NH₃)_yCs_{0.4}FeSe sample at 1.9, 5.0, 7.0 and 11 GPa
- 2) T_c is plotted as a function of α in the pressure range of 0 13 GPa.
- 3) T_c is plotted as a function of anion height in the pressure range of 0 13 GPa.
- 4) R T plots of the second (NH₃)_yCs_{0.4}FeSe sample at 8.8, 9.5, 11 and 14 GPa
- 5) T_c is plotted as a function of anion height in the pressure range of 0 41 GPa.

Figure S1. Resistance *vs.* temperature plots of the first $(NH_3)_yCs_{0.4}$ FeSe sample at 1.9, 5.0, 7.0 and 11 GPa. The grey solid lines refer to the fitting ones for the normal and superconducting states. The arrows correspond to the T_c 's determined from the midpoint. As described in text, the drop is not observed at 11 GPa. Inset: the expanded resistance *vs.* temperature plot at 5.0 GPa, which is provided to show how to determine the T_c .

Figure S2: T_c is plotted as a function of α . The symbols are defined in the caption of Figure 1(c) in text. The arrows indicate T_c 's lower than the temperatures denoted by bars.

Figure S3: T_c is plotted as a function of anion height in the pressure range of 0- 13 GPa. The symbols are defined in the caption of Figure 1(c) in text. The arrows indicate T_c 's lower than the temperatures denoted by bars.

Figure S4: Resistance *vs.* temperature plots of the second $(NH_3)_yCs_{0.4}$ FeSe sample at 8.8, 9.5, 11 and 14 GPa. The arrows correspond to the T_c 's in two phases. As described in text, small drops are observed in R - T plots below 10 K at 8.8 and 9.5 GPa. The drop is observed even at 11 GPa, but no drop is observed below 10 K at 14 GPa.

Figure S5: T_c is plotted as a function of anion height in the pressure range of 0 - 41 GPa. The symbols are defined in the caption of Figure 1(c) in text. The arrows indicate T_c 's lower than the temperatures denoted by bars. The solid line is a visual aid.