Modeling Autosomal Recessive Cutis Laxa Type 1C (ARCL1C) in 1

Mice Reveals Distinct Functions of Ltbp-4 Isoforms 2

3 Running title: Ltbp-4L and Ltbp-4S in ARCL1C

- Alexandra C. Maul¹, Anne Conradi^{1¶}, Katharina Dinger^{1,2}. 4 Insa Bultmann-Mellin¹, F. Thomas Wunderlich^{6,7,8}. Thomas Imhof^{4,5}, 5 Frank Wempe³, Alexander P. Wohl⁴, Alexander C. Bunck⁹, Alexander Ghanem¹³, Tomoyuki Nakamura¹⁰, Katri Koli¹¹, Wilhelm Bloch¹². 6 Andrea Heinz¹⁴, Harald von Melchner³, Gerhard Sengle^{4,6}, 7 and Anja Sterner-Kock¹* 8 9 ¹Center for Experimental Medicine, Medical Faculty, University of Cologne, Cologne, Germany 10 ²Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, 11 Germany 12 13 ³Department of Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany ⁴Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany 14 ⁵Institute for Dental Research and Oral Musculoskeletal Biology, Medical Faculty, University of Cologne, 15 Cologne, Germany 16 17 ⁶Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany ⁷Max Planck Institute for Metabolism Research, Cologne, Germany 18 19 20 21 22 23 24 25 26 27 ⁸Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany ⁹Department of Radiology, Medical Faculty, University of Cologne, Cologne, Germany ¹⁰Department of Pharmacology, Kansai Medical University, Osaka, Japan ¹¹Research Programs Unit and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- ¹²Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
- ¹³Department of Medicine/Cardiology, University of Bonn, Bonn, Germany
- ¹⁴Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- 28 *Corresponding author
- 29 E-mail: anja.sterner-kock@uk-koeln.de (ASK)
- 30
- 31 [¶]These authors contributed equally to this work
- 32 Keywords: Latent Transforming Growth Factor Beta Binding Protein 4, Ltbp-4, Ltbp-4L,
- Ltbp-4S, Autosomal Recessive Cutis Laxa Type 1C, ARCL1C, Elastogenesis, Extracellular 33 34 Matrix, ECM, Fibulin-4, Fibulin-5
- 35

36 Supplementary material

37

38

39 Supplementary material Fig. S1. Generation of *Ltbp4S^{-/-}* and *Ltbp4^{-/-}* mice.

40 (A) To generate mice lacking Ltbp-4 we obtained an ES-cell clone (E301B04) from GGTC (German Gene Trap 41 Consortium, Germany), containing a FlipROSAßgeo gene-trap cassette in the first intron of the short isoform of 42 Ltbp4 (Ltbp4S; e.g. in the fourth intron of Ltbp4L). The used vector consisted of a promoterless β geo-reporter 43 with an upstream splice acceptor site (SA) and a downstream polyadenylation sequence (pA) that terminated 44 expression of both Ltbp4 transcripts. The integration of the U3Cre vector was described previously (Sterner-45 Kock et al., 2002) (gDNA= genomic DNA). (B) Representative Southern Blot analysis of gDNA from wild-type 46 (WT) and ES-cell clone E301B04 showing mutant and WT bands using EcoRV- or HindIII-digested gDNA and 47 specific 5'-probes.

Supplementary material Fig. S2. Expression of Ltbp-4 is reduced in *Ltbp4S^{-/-}* and absent
in *Ltbp4^{-/-}* primary lung fibroblasts.

53 Representative immunofluorescence staining of Ltbp-4 revealed reduced expression in primary lung fibroblasts

54 from $Ltbp4S^{-/-}$ and no expression in primary lung fibroblasts from $Ltbp4^{-/-}$ mice compared to WT mice (Scale

- 55 bar= 50 μ m).
- 56

- 59 Supplementary material Fig. S3. Ltbp-4 deficient mice have tortuous aortae.
- $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice showed tortuous aortae compared to WT mice (Scale bar= 10 mm).

63 Supplementary material Fig. S4. Analysis of aortic walls in Ltbp-4 deficient mice.

64 (A) A ortic walls of $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice showed comparable signals for glycosaminoglycans (Alcian blue),

 α SMA (marker for smooth muscle cells), or PCNA (marker for cellular proliferation). (B,C) There was no

66 difference between WT, $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ aortic walls regarding the number of (B) α SMA-positive, or (C)

67 PCNA-positive cells. (Scale bar= 50 μ m; n= 10; not significant).

Supplementary material Fig. S5. Electron microscopy in Ltbp-4 deficient mice reveals
that integrity of elastic lamellae correlates with Ltbp-4 presence, while the elastin

72 content and cross-linking is not affected.

73 (A) Ultrastructural images of lungs from Ltbp4^{-/-} mice revealed patches of condensed, amorphous elastin, 74 scattered irregularly, lacking organized, intact elastic fibers. In Ltbp4S^{-/-} mice short fragments of plump, 75 amorphous elastic fiber fragments and well organized elastic fibers were evident. Red arrows point to deposited 76 elastic material and yellow asterisks (*) to amorphous material between elastic fibers. (B) mRNA expression of tropoelastin showed no differences in lungs from $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice compared to WT mice. Tropoelastin 77 78 mRNA expression of WT mice was set to 1 (n≥ 3; not significant). (C) Comparable amounts of elastin (Eln) were presented in lung tissue from $Ltbp4S^{/-}$ and $Ltbp4^{-/-}$ mice compared to WT mice (n \geq 5; not significant). 79 80 (D) Ratios of desmosine and isodesmosine (DES and IDES) per mg Eln were similar in lungs from $Ltbp4S^{-/-}$ and 81 *Ltbp4*^{-/-} mice compared to WT mice ($n \ge 5$; not significant).

84 Supplementary material Fig. S6. Ltbp-4S is necessary for ECM deposition of fibulin-5.

85 (A) Fibulin-5 mRNA expression was significantly downregulated in lungs from Ltbp45^{-/-} and Ltbp4^{-/-} mice 86 compared to WT mice (n=4; **p<0.01). (B) Representative images showed disruption of the fibrillar structure 87 of fibulin-5 fibers in aortic walls (upper panel; scale bars= $20 \ \mu m$) and lungs (lower panel; scale bars= $50 \ \mu m$) 88 from Ltbp4S^{-/-} and Ltbp4^{-/-} mice compared to WT mice. (C) Fibulin-5 mRNA expression displayed significant downregulation in lung fibroblasts isolated from $Ltbp4^{-/-}$ mice compared to $Ltbp4S^{-/-}$ and WT mice (n ≥ 5 ; 89 90 **p<0.01). (D) Representative immunoblot of lung fibroblasts (left) and its densitometric analysis (right) 91 revealed significant downregulation of fibulin-5 in Ltbp4S^{-/-} and Ltbp4^{-/-} mice compared to WT mice 92 $(n \ge 4; **p < 0.01)$. (E) Representative immunofluorescence staining of Ltbp-4 and fibulin-5 of primary lung fibroblasts revealed reduced Ltbp-4 immunoreactivity in Ltbp45^{-/-} and absence of Ltbp-4 in Ltbp4^{-/-} mice. The 93 ECM deposition of fibulin-5 was impaired in Ltbp45^{-/-} and Ltbp4^{-/-} mice compared to WT mice. Scale 94 95 bars= 100 µm. Protein as well as mRNA expression of fibulin-5 of the WT was set to 1.

fibulin-2 mRNA expression

Α

99 Supplementary material Fig. S7. Fibulin-2 is upregulated in heart of Ltbp-4 deficient 100 mice.

101 (A) mRNA expression of fibulin-2 showed significant increase in hearts from $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice 102 compared to WT mice. Fibulin-2 mRNA expression of WT mice was set to 1 ($n \ge 5$; **p<0.01). 103 (B) Representative images showed an increase of fibulin-2 immunoreactivity especially in the vicinity of the 104 endothelial lining of the vessel walls in hearts of $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice compared to WT 105 (Scale bar= 20 µm).

108 Supplementary material Fig. S8. Fibronectin and fibrillin-1 network assembly is normal

- 109 in $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice.
- 110 Immunofluorescence images of assembled fibronectin and fibrillin-1 networks by primary lung fibroblasts
- 111 showed no differences between $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice compared to WT mice. (Scale bar= 50 µm).
- 112

- 114 Supplementary material Fig. S9. Deglycosylation of Ltbp-4 isolated from WT lungs.
- 115 Deglycosylation digests with PNGase F of WT lungs showed a shift towards lower molecular
- 116 weight positions.

- 119
- 120 Supplementary material Fig. S10. Active TGFβ levels are comparable in *Ltbp4S^{-/-}*,
- 121 $Ltbp4^{-t-}$ and WT mice.
- 122 Conditioned media from isolated lung fibroblasts were collected and assayed for active TGFβ levels. No
- 123 differences between $Ltbp4S^{-/-}$ and $Ltbp4^{-/-}$ mice compared to WT mice were detected (n= 3; p= n.s.).
- 124

	EF [%]	LVEDV [µl]	LVESV [µl]	SV [µl]
WT (n= 12)	72.2 ±9.5	12.8 ±1.9	3.5 ±1.3	9.3 ±1.9
<i>Ltbp4</i> ^{/-} (n= 8)	76.1 ±1.1	11.5 ±0.2	2.8 ±0.1	8.8 ±0.3

125 Supplementary material Table S1. Left-ventricular function is normal in *Ltbp4^{-/-}* mice.

The left ventricular end-diastolic volume (LVEDV), the left ventricular end-systolic volume (LVESV) and the stroke volume (SV) tended to be lower and the ejection fraction (EF) tended to be higher but did not reach statistical significance in $Ltbp4^{-/-}$ mice compared to WT mice as measured by transthoracic echocardiography (p= n.s.).

131 Supplementary material Table S2. Binding affinities for Ltbp-4L-2xStrep and 132 Ltbp-4S-2xStrep interactions with rfibulin-4 and rfibulin-5.

analyte / ligand	<i>k</i> _{on} *10 ⁻³ [nM ⁻¹ s ⁻¹]	<i>k</i> _{off} *10 ⁻³ [s ⁻¹]	<i>K</i> ₄ [nM]
Ltbp-4L-2xStrep / rfibulin-5	2.2	5.3	2.4
Ltbp-4S-2xStrep / rfibulin-5	1.0	15.8	15.8
Ltbp-4L-2xStrep / rfibulin-4	1.3	4.1	3.1
Ltbp-4S-2xStrep / rfibulin-4	0.7	10.8	15.4

133 Surface plasmon resonance data measuring the binding affinity for immobilized recombinant full-length

134 fibulin-4 and fibulin-5 (rfibulin; as ligand) and N-terminal Ltbp-4L (Ltbp-4L-2xStrep) and Ltbp-4S

135 (Ltbp-4S-2xStrep) fragments flown over in solution (as analyte).

Supplementary material Table S3. Primers and probes. 137

5mL4_gen	5'-CTCTGGGTGTCGCTATTGGT-3'
3mL4_gen	5'-CAAGTCCATCCCCACACTCT-3'
betageo_gen	5'-GAAAGACCGCGAAGAGTTTG-3'
3C7WT	5'-GGCTCATGCTTGAATGTTTCAG-3'
3C7P3	5'-CCAATCTTGCTTGCTGAGC-3'
3C7TG	5'-ATCATGCAAGCTGGTGGCTG-3'
Ltbp4_SV	Forward 5'-GGGACCCGGCTTCCGC-3'
(Primerdesign, Rownhams,	Reverse 5'-GCAGCGATCAGGCTTCACA-3'
Southampton, UK)	Probe 5'-CCTTCCTATGTCCCTTGATCTGTCACAACGtggaagg-3'
Ltbp4_LV	Forward 5'-GTTGCTGCCTGTCACTGC-3'
(Primerdesign, Rownhams,	Reverse 5'-GCACCCCTCTAGACCTGTG-3'
Southampton, UK)	Probe 5'-CCTAGACCAGACACCTAAGAGTAGCCGCgtctagg-3'
Tropoelastin	Forward 5'-TTGCTGATCCTCTTGCTCAAC-3'
	Reverse 5'-GCCCCTGGATAATAGACTCCAC-3'
Fibulin-2	Forward 5'-TGGTACCTGCACATATCTTCCGCA-3'
	Reverse 5'- ACCACCAGTGTAGGCATTGAGT-3'
Fibulin-4	Forward 5'-TGGTGCCTACAATGCCTTTC-3'
	Reverse 5'-GGCGCTGACATTGTTGATTT-3'
Fibulin-5	Forward 5'-CCGATACCCTGGTGCCTATT-3'
	Reverse 5'-GCACTGATAGGCCCTGTTTG-3'
Gapdh	Forward 5'-ATGTGTCCGTCGTGGATCTGA-3'
	Reverse 5'-TGCCTGCTTCACCACCTTCT-3'

138

140 Supplementary material Table S4. Primary antibodies.

		Immuno- blot	Immuno-histochemistry	Immuno- fluorescence analysis
αSMA	spring bioscience, USA		1:100	
Ltbp-4	AF2885; R&D Systems, Germany	1:1000	1:100	1.2000
Fibulin-2	ab125256; abcam, UK		1:150	
Fibulin-4	kind gift from Takako Sasaki, Oita University, Japan	1:2000	1:400	1:2000
Fibulin-5	#3775; Epitomics, USA	1:5000	1:500	1:5000
PCNA	ab2426; abcam, UK		1:6000	
Strep-tag [®] fusion proteins	2-1507-001; IBA; Germany			1:2000

References

145 Sterner-Kock, A., Thorey, I. S., Koli, K., Wempe, F., Otte, J., Bangsow, T.,
146 Kuhlmeier, K., Kirchner, T., Jin, S., Keski-Oja, J. et al. (2002). Disruption of the gene
147 encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes
148 abnormal lung development, cardiomyopathy, and colorectal cancer. *Genes & Development*

16, 2264-73.