Identification of binding sites and favorable ligand binding moieties by virtual screening and Self-Organizing Map analysis

Emna Harigua-Souiai, Isidro Cortes-Ciriano, Nathan Desdouits, Thérèse E. Malliavin, Ikram Guizani, Michael Nilges, Arnaud Blondel, Guillaume Bouvier*

February 5, 2015

Additional Tables

Target	PDB entry	Cay number	Cav ids
na2ga	1 b b entry	8	1 2 3 5 14 15 16 19 30
hmdh	300	6	369121315
braf	3d4a	5	23456
reni	3067	1	1378
pror	3kb2	4	1234
prgi ngh2	3ln1	4	671113
glcm	2\/3f	4	26711
gicili osr2	2V31	4	20711
dpp/	2152	4	15 17 20 24
upp4	2170 20du	4	2460
cxCr4	2000	4	1025
 	- Slixu 2eim		245
Inkul	20jg 2:0a	2	245
крсь	210e	2	1 10 11
hivet	2Dol 2lan	2	109
nivrt	Jan 1-:0	2	230
esri	15JU 2mbl	2	145
aras	3pbi 1#0a	2	145
cp2c9	1-2h	3	350
aord	153D	3	2511
adrbi	2Vt4	3	109
aces	1600	3	237
vgtr2	2p2i	2	12
thrb	Type	2	23
thb	1q4x	2	12
tgfrl	3nmm	2	12
src	3618	2	5 0
sann	1114	2	08
pyrd	Id3g	2	10 11
pygm	1c8k	2	68
pparg	2gtk	2	35
ppard	2znp	2	1 10
ppara	2p54	2	12
pgh1	2oyu	2	23
parpl	3l3m	2	34
nram	1b9v	2	13
mcr	2aa2	2	23
lck	2of2	2	36
jak2	3lpb	2	4 5
inha	2h7l	2	16
gria2	3kgc	2	12
gcr	3bqd	2	13
fgfr1	3c4f	2	3 4
dhi1	3frj	2	2 5
bace1	3l5d	2	12
andr	2am9	2	56
ampc	112s	2	3 5
adrb2	3ny8	2	1 2
ace	3bkl	2	13
abl1	2hzi	2	16

Table S1 DUD-E targets sub-domains containing at least two cavities (detected with mkgrid) with a volume superior to 100 Å³. The last column contains the labels obtained with mkgrid for the detected cavities.

			_	_			_
_	Cavity label	1	2	3	4	5	6
	Cavity volume (Å ³)	15.4	338.5	957.4	83.8	34.8	294.9
	Neuron density (ADvina)	0.260	3.070	0.976	0.0	0.0	0.058
	Neuron density (Dock)	0.0	2.065	0.251	0.465	0.0	0.0
TIIV-INI	Cavity label	7	8	9			
	Cavity volume (Å ³)	15.4	15.4	15.4			
	Neuron density (ADvina)	1.494	1.494	0.0			
	Neuron density (Dock)	0.0	0.0	0.0			
	Cavity label	1'	2'	3'	4'	5'	6'
-	Cavity volume (Å ³)	257.1	15.4	52.8	46.8	15.1	615.5
	Neuron density (ADvina)	3.940	0.0	0.0	0.043	0.861	2.600
	Neuron density (Dock)	6.410	0.0	0.0	0.0	0.0	0.0
A D I 1							
ADLI	Cavity label	7'	8'	9'	10'	11'	12'
-	Cavity volume (Å ³)	79.6	15.1	22.1	46.6	89.5	37.6
	Neuron density (ADvina)	0.0	0.0	0.0	0.0	0.0	0.0
	Neuron density (Dock)	0.0	0.0	0.0	0.0	0.0	0.0

Table S2 Cavities detected by mkgrid on HIV-RT and ABL1. Their label, volume and neuron density (neuron/Å³) were calculated with the SOMs obtained with the EGF library. Cavities corresponding to AS and BS2 are in bold for each target.

Mathad	Set cize	Success rate (SR)		
Wethou	Set size	Top3	Top1	
SOM-BSfinder	102	99%	90%	
ETcito	48	98%	94%	
FISILE	35	97%	97%	
Q-siteFinder	134	86%	80%	
SiteHound	77	95%	77%	
AutoLigand	187	_	73%	

Table S3 Success rates for SOM-BSfinder and other energy-based algorithms when precision threshold is set to zero. These results are consistant with those obtained with various precision thresholds. SOM-BSfinder outperformed Q-siteFinder, SiteHound and AutoLigand, but presented lower success rates compared to FTSite.

Target	SOM-BSfinder	SiteHound	FTSite
HIV-RT	1	3	1
ABL1	2	2	3
RENI	1	2	1,2,3
BRAF	1	2,3	1
HMDH	1	6	1,2
PA2GA	1	1,2	1,2

Table S4 Active Site rank calculated for 6 targets in the DUD-E, chosen in different categories (table 1), using SOM-BSfinder, SiteHound and FTSite. With ABL1, SOM-BSfinder and SiteHound ranked the AS as the second position and FTSite ranked it in the third one. Otherwise, SOM-BSfinder ranked the AS as the first CC, which is not the case for FTSite and SiteHound. The latter algorithms showed more variability in the ranking.

	E(EGFd)	E(AS)	$E(\overline{AS})$	E(AS)/E(EGFd)	$E(AS)/E(\overline{AS})$
HIV-RT	0.08	0.22	0.05	2.85	4.64
ABL1	0.06	0.18	0.04	2.87	4.44

Table S5 The enrichments in "active features" of the docked fragments (E(EGFd)), the AS (E(AS)) and the complementary of AS (E(\overline{AS})) for the test targets HIV-RT and ABL1.

Page	4 c	of 6
------	-----	------

Target	Metric	Value	μ	σ	Z-score
HIV-RT	Se	0.49	0.17	10^{-2}	23
	Sp	0.85	0.82	10^{-3}	23
ABL1	Se	0.46	0.16	10^{-2}	20
	Sp	0.86	0.84	10^{-3}	20

Table S6 Z-scores of the sensitivity (Se) and specificity (Sp) values obtained with the chemical features decomposition analysis for the test targets: HIV-RT and ABL1. For the sensitivity, we simulated a random sampling over features docking in the AS (F_{AS}) 1 million times. In a perfect scenario, all the active features (F_A) would dock in the AS, giving a sensitivity equal to 1. In the worst scenario, none of the active features would dock in the AS. The resulting samples were normally distributed $N(\mu, \sigma)$. The Z-score is the distance in terms of σ between the "experimental" value and the mean μ of the normal distribution. We did the same for the sensitivity, sampling randomly over features that would never dock in the AS ($\overline{F_{AS}}$).

Additional Figures

Page 6 of 6