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1 Results on TCGA cancer datasets

We analysed the mutual exclusivity of gene alterations for the following 17 TCGA studies:

• Acute Myeloid Leukemia (LAML)

• Adrenocortical Carcinoma (ACC)

• Brain Lower Grade Glioma (LGG)

• Breast Invasive Carcinoma (BRCA)

• Colorectal Adenocarcinoma (COADREAD)

• Glioblastoma Multiforme (GBM)

• Head and Neck Squamous Cell Carcinoma (HNSC)

• Kidney Renal Clear Cell Carcinoma (KIRC)

• Kidney Renal Papillary Cell Carcinoma (KIRP)

• Lung Adenocarcinoma (LUAD)

• Lung Squamous Cell Carcinoma (LUSC)

• Ovarian Serous Cystadenocarcinoma (OV)

• Prostate Adenocarcinoma (PRAD)

• Skin Cutaneous Melanoma (SKCM)

• Stomach Adenocarcinoma (STAD)

• Thyroid Carcinoma (THCA)

• Uterine Corpus Endometrial Carcinoma (UCEC)

4 of the datasets (Adrenocortical Carcinoma, Kidney Renal Clear Cell Carcinoma, Kidney Renal Papillary Cell
Carcinoma, and Lung Squamous Cell Carcinoma) did not yield any result set with FDR smaller than 0.5.

The alterations in the endometrial cancer samples are either strongly dominated by copy number changes, or by
mutations (Fig. S1). To eliminate the effect of these subtypes, we separated the dataset into two as CNA-domiated
and mutation-dominated, and coded them with UCEC-cna and UCEC-mut, respectively.

We summarize the results of each TCGA study using 3 figures. The first figure is the plot of the expected number
of true positivies and false positives in the results versus the false discovery rate (FDR) cutoff. Since we would like
to maximize the true positives and minimize the false positives, we select the FDR cutoff that gives the maximum
expected value of true positives − false positives. Second figure shows groups in the results. In these figures, the
member genes of groups are nested in a compound node, and the border label of the compound node shows the
sample coverage of alterations. When none of the common targets of the group is a member, one of the common

1



Figure S1: Distribution of the copy number alterations and mutations to endometrial cancer samples, as provided by
cBioPortal.

targets are shown and placed outside of the compound node. Third figure shows the portion of the signaling network
that contains the genes in the result groups and some of their common targets. In both of the second and the third
figures, the gene colors are scaled to their alteration ratio. Table S1 shows the matching of the figures and the studies.
Other details about the analyses – such as scores, p-values, oncoprints, etc – are given in a separate archive named
“datasets-and-results.zip”.

Table S1: The mapping between TCGA datasets and result figures.

Dataset name FDR-guide Result groups Integrated network
Acute Myeloid Leukemia Figure S2 Figure S3 Figure S4
Brain Lower Grade Glioma Figure S5 Figure S6 Figure S7
Breast Invasive Carcinoma Figure S8 Figure S9 Figure S10
Colorectal Adenocarcinoma Figure S11 Figure S12 Figure S13
Glioblastoma Multiforme Figure S14 Figure S15 Figure S16
Head and Neck Squamous Cell Carcinoma Figure S17 Figure S18 Figure S19
Lung Adenocarcinoma Figure S20 Figure S21 Figure S22
Ovarian Serous Cystadenocarcinoma Figure S23 Figure S24 Figure S25
Prostate Adenocarcinoma Figure S26 Figure S27 Figure S28
Skin Cutaneous Melanoma Figure S29 Figure S30 Figure S31
Stomach Adenocarcinoma Figure S32 Figure S33 Figure S34
Thyroid Carcinoma Figure S35 Figure S36 Figure S37
Uterine Corpus Endometrial Carcinoma (CNA) Figure S38 Figure S39 Figure S40
Uterine Corpus Endometrial Carcinoma (Mut) Figure S41 Figure S42 Figure S43
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Figure S2: Change of expected number of true positives and false positives with FDR cutoff in Acute Myeloid Leukemia
results.

Figure S3: Groups of genes with mutually exclusive alterations for Acute Myeloid Leukemia.

Figure S4: The signaling network identified using Acute Myeloid Leukemia analysis results.
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Figure S5: Change of expected number of true positives and false positives with FDR cutoff in Brain Lower Grade
Glioma results.
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Figure S6: Groups of genes with mutually exclusive alterations for Brain Lower Grade Glioma.

Figure S7: The signaling network identified using Brain Lower Grade Glioma analysis results.
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Figure S8: Change of expected number of true positives and false positives with FDR cutoff in Breast Invasive
Carcinoma results.

Figure S9: Groups of genes with mutually exclusive alterations for Breast Invasive Carcinoma.
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Figure S10: The signaling network identified using Breast Invasive Carcinoma analysis results. If a gene’s alterations
are significantly overlapping with a subtype, this is indicated with color-coded highlight.
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Figure S11: Change of expected number of true positives and false positives with FDR cutoff in Colorectal Adenocar-
cinoma results.
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Figure S12: Groups of genes with mutually exclusive alterations for Colorectal Adenocarcinoma.

Figure S13: The signaling network identified using Colorectal Adenocarcinoma.
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Figure S14: Change of expected number of true positives and false positives with FDR cutoff in Glioblastoma Multi-
forme results.

Figure S15: Groups of genes with mutually exclusive alterations for Glioblastoma Multiforme.
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Figure S16: The signaling network identified using Glioblastoma Multiforme analysis results.
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Figure S17: Change of expected number of true positives and false positives with FDR cutoff in Head and Neck
Squamous Cell Carcinoma results.
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Figure S18: Groups of genes with mutually exclusive alterations for Head and Neck Squamous Cell Carcinoma.

Figure S19: The signaling network identified using Head and Neck Squamous Cell Carcinoma analysis results.
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Figure S20: Change of expected number of true positives and false positives with FDR cutoff in Lung Adenocarcinoma
results.

Figure S21: Groups of genes with mutually exclusive alterations for Lung Adenocarcinoma.
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Figure S22: The signaling network identified using Lung Adenocarcinoma analysis results.
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Figure S23: Change of expected number of true positives and false positives with FDR cutoff in Ovarian Serous
Cystadenocarcinoma results.

Figure S24: Groups of genes with mutually exclusive alterations for Ovarian Serous Cystadenocarcinoma.
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Figure S25: The signaling network identified using Ovarian Serous Cystadenocarcinoma analysis results.
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Figure S26: Change of expected number of true positives and false positives with FDR cutoff in Prostate Adenocarci-
noma results.

Figure S27: Groups of genes with mutually exclusive alterations for Prostate Adenocarcinoma.

Figure S28: The signaling network identified using Prostate Adenocarcinoma analysis results.
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Figure S29: Change of expected number of true positives and false positives with FDR cutoff in Skin Cutaneous
Melanoma results.

Figure S30: Groups of genes with mutually exclusive alterations for Skin Cutaneous Melanoma.

Figure S31: The signaling network identified using Skin Cutaneous Melanoma analysis results.
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Figure S32: Change of expected number of true positives and false positives with FDR cutoff in Stomach Adenocar-
cinoma results.

Figure S33: Groups of genes with mutually exclusive alterations for Stomach Adenocarcinoma.
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Figure S34: The signaling network identified using Stomach Adenocarcinoma analysis results.
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Figure S35: Change of expected number of true positives and false positives with FDR cutoff in Thyroid Carcinoma
results.

Figure S36: Groups of genes with mutually exclusive alterations for Thyroid Carcinoma.
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Figure S37: The signaling network identified using Thyroid Carcinoma analysis results.
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Figure S38: Change of expected number of true positives and false positives with FDR cutoff in the results of CNA-
dominated samples of Uterine Corpus Endometrial Carcinoma.
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Figure S39: Groups of genes with mutually exclusive alterations for CNA-dominated samples of Uterine Corpus
Endometrial Carcinoma.
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Figure S40: The signaling network identified using analysis results of CNA-dominated samples of Uterine Corpus
Endometrial Carcinoma. If a gene’s alterations are significantly overlapping with a subtype, this is indicated with
color-coded highlight.
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Figure S41: Change of expected number of true positives and false positives with FDR cutoff in the results of mutation-
dominated samples of Uterine Corpus Endometrial Carcinoma.

Figure S42: Groups of genes with mutually exclusive alterations for mutation-dominated samples of Uterine Corpus
Endometrial Carcinoma.
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Figure S43: The signaling network identified using analysis results of mutation-dominated samples of Uterine Corpus
Endometrial Carcinoma. If a gene’s alterations are significantly overlapping with a subtype, this is indicated with
color-coded highlight.
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color key for
recurrence in results:

Figure S44: The complete version of Figure 3 of the main article.

Figure S44 is the complete version of Figure 3 in the main article. Here, recurrent and non-recurrent, all genes and
co-presences in the results are shown. This graph contains 199 genes.
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Table S2: 31 recurrent genes in results, sorted from well-known to least-known in the context of cancer. Co-citation:
Co-citation count of the gene with the word “cancer” in PubMed articles [1]. Mutex results: Study codes that the
gene is in Mutex results. If more than 3 studies exist, then only the number of studies displayed. If MutSig and Gistic
cannot detect this gene in a particular study, that study is printed in bold color. Recurrent mutations: Study
codes for which MutSig can detect this gene. Recurrent copy number alterations: Study codes for which Gistic
can detect this gene. Mutation hotspot: Whether there is a hotspot in the overall distribution of mutations of the
gene, among all the data submitted to cBioPortal.

Gene Co-
citation

Mutex results Recurrent muta-
tions (MutSig)

Recurrent copy num-
ber alterations (Gistic)

Mutation
hotspot

TP53 5779 8 with LAML 13 GBM, PRAD 3

EGFR 3984 GBM, LGG, LUAD GBM, LGG, LUAD 5 3

PTEN 2536 6 9 12 3

KRAS 2441 5 with THCA 4 4 3

CTNNB1 1957 UCEC-cna, UCEC-mut ACC, PRAD, UCEC KIRC 3

TPR 1761 BRCA, UCEC-mut COADREAD 3

MYC 1707 5 with HNSC 8 3

BRAF 1495 4 5 4 3

MDM2 1408 GBM, LUAD 5 3

CDKN2A 1033 GBM, LGG 4 11 3

RB1 582 BRCA, GBM 5 12 3

CDK4 549 GBM, LUAD 5 3

PIK3CA 538 5 8 BRCA, KIRC, LGG 3

CDKN2B 233 GBM, LGG BRCA, GBM, KIRP 3

FBXW7 138 UCEC-cna, UCEC-mut 4 KIRC 3

MDM4 110 BRCA, LGG COADREAD, GBM, LGG

PIK3R1 90 UCEC-cna, UCEC-mut 4 BRCA, OV 3

CREBBP 90 BRCA, UCEC-cna LUSC, OV, UCEC 3

NRAS 77 COADREAD, SKCM, THCA 4 6 3

ARID1A 56 COADREAD, UCEC-cna, UCEC-mut 4 8 3

DVL3 33 UCEC-cna, UCEC-mut LGG

TRRAP 21 UCEC-cna, UCEC-mut 3

AGAP2 16 GBM, LUAD 5 3

CERS2 15 BRCA, UCEC-mut 4
RORC 11 LUAD, UCEC-cna COADREAD, LUSC 3

NCSTN 10 UCEC-cna, UCEC-mut COADREAD

LAMA2 5 HNSC, UCEC-mut 4
RIT1 5 LUAD, UCEC-cna LUAD COADREAD, UCEC 3

OBSCN 4 BRCA, GBM, PRAD ACC KIRC, PRAD, UCEC 3

RYR1 3 UCEC-cna, UCEC-mut LUSC

SPTB 1 UCEC-cna, UCEC-mut 5
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Figure S45: Hotspots in the recurrent genes that are not strongly associated with cancer in the literature,
as provided by cBioPortal. Following is the key for mutation colors. Green: missense, red: either frameshift, or
splice site, or nonsense, black: insertion or deletion, purple: mix of previous categories. Conserved protein domains are
also shown on the graph with colored rectangles, where repeated domains have the same color. We tested significance
of hotspots (and hot-region in the case of RORC), on 10 genes that are least-associated with cancer, by randomizing
positions of the mutations 108 times. We found that the hotspots in 5 genes are statistically significant. The Benjamini-
Hochberg procedure estimates 0.076 false discovery rate for these 5 genes. All the most significant hotspots on these
genes are composed of missense mutations. We also detected a very significant hotspot on RYR1, but they are all
frameshift mutations and most of them have very low allele frequencies, so we didn’t include it in this figure.

22



Figure S46: The distribution of RHOC expression in TCGA studies.

The recurrent target gene RHOC is expressed in majority of TCGA samples (Fig. S46).

2 Method runtimes in simulation

Table S3: The recorded runtimes of the compared methods in the simulation study.

Method Large dataset Small dataset Large dataset
(using network)

Small dataset
(using network)

Mutex 13h, 6m, 42s 11m, 54s 1h, 5m, 55s 8m, 34s
Pair search 2s less than a second - -
RME 11h, 52m, 36s 29m, 17s - -
Dendrix 1d, 21h, 45m, 40s 4h, 5m, 18s - -
MDPFinder 14h, 35m, 51s 1m, 12s - -
Multi-dendrix 35m, 41s 1m, 1s - -
MEMo - - did not finish 9m, 58s
ME did not finish 1h, 37m, 12s - -
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3 Method figures

Figure S47 shows the mapping between the oncoprint notation and contingency table notation, both represent distri-
bution of alterations in two genes. Figure S48 provides an example distribution where copy number amplified genes
have higher expression.

Gene A

Gene B

A A

B

B

a) Oncoprint b) Table

Figure S47: Two different representations for the overlap in gene alterations of two genes. Background
colors marks and represent the sample counts for each four categories. a) Oncoprint notation. Each column of gray
rectangles indicates a sample, and gene alterations are marked with black. b) A 2-by-2 contingency table showing
counts of samples classified into 4. Hypergeometric test is commonly used to calculate p-value for dependency of
attributes in such a table.

Figure S48: Verification of copy number changes using expression data. We only used copy number changes
that are verified with expression. m1 and m2 are mean expressions of copy number intact and copy number amplified
samples, respectively. thr is the threshold expression marking the point where an expression has higher probability to
belong to the amplified samples.
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4 Issues in methods that detect group mutexness

4.1 Cliques of pairwise mutexness

Yeang et al. [2] detect mutex gene pairs, and detect a group only if all pairs in the group are significantly mutex.
This method is too strict to search for mutex groups and will fail to detect most groups since a significant mutex
group typically contains some insignificant pairs. Figure S49 shows such a mutex group that cannot be detected by
evaluating pairwise relations.

Figure S49: Example of an extremely significant mutex group where each member contributes equally and
mutexness of gene pairs are insignificant. The chance to get a perfect mutex pattern with random permutation
is 0.19 for any two genes, while it is 2 × 10−7 with all four genes.

4.2 Using coverage and overlap without considering significance

Vandin et al. [3], Zhao et al. [4] and Leiserson et al. [5] define the weight of a mutex group as “coverage - overlap”,
where coverage is the number of samples where at least one gene is altered, and overlap is the surplus of alterations
over the coverage (Eq. 1-3).

weight = coverage − overlap (1)

overlap = total alteration count − coverage (2)

weight = (2 ∗ coverage) − total alteration count (3)

They argue that this weight function is a trade-off between coverage and overlap. However, since the significance of
mutexness is not controlled, this measure is prone to detect noise in the system instead of the signal. Such an example
is given in Figure S50, where the weight function will favor the second group (high weight and low significance) over
the first group (low weight and high significance).

Figure S50: Two example gene groups A-B and C-D, where mutexness of A-B is much more significant
than C-D according to hypergeometric test, but group C-D has higher weight according to Eq. 3.

The second drawback of this approach is that it fails to detect cases such as a gene in the group decreases the
group weight while it is significantly mutex with the group. For instance the weight of gene A in Figure S51 is higher
than the group A-B. This is because addition of gene B increases coverage by 5, but also increases overlap by 6, which
results in a decrease in weight. In that case, the search function would detect gene A as a group of 1 rather than
detecting the group A-B.

Figure S51: A highly significant mutex group A-B, where the weight of gene A itself is higher than the
group.
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5 Test for a degree-bias in Mutex’s metric

During the peer-review of this manuscript, one of the reviewers noted the high frequency of the appearance of TP53
in Mutex results, and asked if this can be due to the very high degree of TP53 on the signaling network. To test
if there is a degree-bias in our method, we calculated the spearman correlation between the rank of false genes in
the simulation results of large simulated dataset, and their degree (number of neighbors) on the network. We expect
this correlation to be zero in a totally unbiased system. We observed it to be very small, but statistically significant
(correlation = -0.12, p-val = 0.002) (Fig. S52).

Figure S52: The plot of the rank of the score of false genes versus the rank of their degree on the
signaling network. Low-rank of score means more significant and high-rank of degree means more connected.

Even though the bias is small, it needs to be explained. When we repeat the calculation for the results of the
simulation in which no networks were used, the correlation becomes insignificant (correlation = -0.03, p-val = 0.50),
so the degree bias is really related to the usage of networks.

After an extensive investigation, we noticed that this bias is not due to insufficient penalization of high-degree
genes, but it is due to the discrete nature of p-values and the unequal distribution of statistical power in the system.
For a gene, the number of all possible p-values is bound with the number of possible overlap patterns in alterations.
For some genes, this number of observed distinct overlap patterns is very low during randomized runs. Consider the
two example distributions of member p-values in Figure S53 (null distribution of p′ values in Figure 2 of the main
article, for two different genes). These are extreme cases of both ends. The left one is close to the expected uniform
distribution. It is plotted with 10000 randomizations, and p′ got 1212 distinct values. The right one is also plotted
using 10000 randomizations, but p′ got only 15 distinct values, and the p′ value of the most significant score is 0.17.
This second gene is not capable of generating noise in the high significance region. The first gene has potential to be
anywhere in the ranking of scores, but the second gene cannot be at the most significant regions of the ranking.

Figure S54 is a redraw of the plot in Figure S52, but this time the genes with low statistical power are shown with
red. This plot shows that the density of the low-statistical-power genes is higher in the low-degree region, as there are
77 red dots below the horizontal 300 line, and 52 above it. This makes sense because low-degree genes are tested with
less number of combinations of other genes, and this will result in less number of distinct p-values. If they also have
a low alteration ratio, this would result in large gaps among possible p-values, and some empty region at the high
significance part of the distribution.

To demonstrate that the cause of the bias is the unequal distribution of the statistical power, we re-calculated the
correlation after removing the red genes from the analysis and re-ranking the blue genes. This made the correlation
to reduce to -0.07 with p-value 0.13. If we further decrease the minimum possible p-value threshold from 0.05 to 0.01
(makes half of the genes red), the correlation becomes -0.04 with p-value 0.54.

So we conclude that our scoring metric is not biased toward high-degree genes, but there is a small bias in the
distribution of statistical power against low degree genes in the system.

Similarly, our metric is not biased toward highly altered genes, but we are able to detect a very small but statistically
significant bias in the results of the simulation on large dataset that do not use the signaling network. Again, we
confirmed that this is due to the statistical power bias against less altered genes.
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Figure S53: Two example null distributions of member p-values for two different genes in simulations.
Left distribution belongs to a case where we have high statistical power, and the right distribution belongs to a case
where we have low statistical power.

Figure S54: Same plot as in Figure S52, but genes with low statistical power are marked.

The frequent occurrence of TP53 in our results is likely due to two reasons: its very high alteration frequency and
biological centrality to multiple cancer processes. When a gene contains many alterations, as in the case of TP53,
we have more statistical power and its mutex groups are more likely to be detected compared to the genes with few
alterations. A mutex group with low coverage is likely to be not statistically significant for a low number of samples.
This effect becomes negligible as the number of samples goes to infinity. In practice, however, we are operating with
a very low number of samples – often a couple of hundred per cancer, compared to the complexity of statistical
interactions we are trying to elucidate. This will change in the near feature as many cancer centers started to sequence
patients on a routine basis. It will be extremely interesting to see how the landscape of results will change once we
have tens of thousands of samples instead of hundreds.

Also biologically TP53 is special, even among the other genes that are highly altered in cancer, such as BRAF or
KRAS, in the sense that it is a central multiswitch controlling apoptosis, dna repair and cell cycle arrest. It controls
the expression of a wide array of genes and downstream pathways. As a result, TP53 status alone is considered as
a subtype marker in many cancers. We believe that this cancer-specific centrality is the other primary reason for
abundance of modules containing TP53 in our results.
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