Appendix 1: Supporting online material

References included in the meta-analysis

- Bherer, L., Kramer, A.F., Peterson, M.S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: Are there age-related differences in plasticity of attentional control?. *Psychology and aging*, 20(4), 695.
- Bherer, L., Kramer, A.F., Peterson, M.S., Colcombe, S., Erickson, K., & Becic, E. (2006).
 Testing the limits of cognitive plasticity in older adults: application to attentional control. *Acta Psychologica*, *123*(3), 261-278.
- Bherer, L., Kramer, A.F., Peterson, M.S., Colcombe, S., Erickson, K., & Becic, E. (2008). Transfer effects in task-set cost and dual-task cost after dual-task training in older and younger adults: further evidence for cognitive plasticity in attentional control in late adulthood. *Experimental aging research*, 34(3), 188-219.
- Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: evidence of transfer and maintenance effects. *Psychology and aging*, *25*(4), 767.
- Borella, E., Carretti, B., Zanoni, G., Zavagnin, M., & De Beni, R. (2013). Working Memory Training in Old Age: An Examination of Transfer and Maintenance Effects. *Archives of Clinical Neuropsychology*, 28(4), 331-347.
- Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Bäckman, L. (2011).
 Neural correlates of training-related working-memory gains in old age. *Neuroimage*, 58(4), 1110-1120.
- Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. *Frontiers in human neuroscience*, 6.

- Buchler, N.G., Hoyer, W.J., & Cerella, J. (2008). Rules and more rules: the effects of multiple tasks, extensive training, and aging on task-switching performance. *Memory & cognition*, 36(4), 735-748.
- Buschkuehl, M., Jaeggi, S.M., Hutchison, S., Perrig-Chiello, P., Däpp, C., Müller, M., ... & Perrig, W.J. (2008). Impact of working memory training on memory performance in old-old adults. *Psychology and aging*, 23(4), 743.
- Carretti, B., Borella, E., Zavagnin, M., & Beni, R. (2012). Gains in language comprehension relating to working memory training in healthy older adults. *International journal of geriatric psychiatry*.
- Cassavaugh, N.D., & Kramer, A.F. (2009). Transfer of computer-based training to simulated driving in older adults. *Applied ergonomics*, *40*(5), 943-952.
- Cepeda, N.J., Kramer, A.F., & Gonzalez de Sather, J. (2001). Changes in executive control across the life span: examination of task-switching performance. *Developmental psychology*, 37(5), 715.
- Dahlin, E., Neely, A.S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. *Science*, *320*(5882), 1510-1512.
- Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A.S. (2008). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. *Psychology and aging*, 23(4), 720.
- Davidson, D.J., Zacks, R.T., & Williams, C.C. (2003). Stroop interference, practice, and aging. *Aging, Neuropsychology, and Cognition*, *10*(2), 85-98.
- Dorbath, L., Hasselhorn, M., & Titz, C. (2011). Aging and executive functioning: a training study on focus-switching. *Frontiers in psychology*, 2.

- Dotson, V.M., Sozda, C.N., Marsiske, M., & Perlstein, W.M. (2012). Within-session practice eliminates age differences in cognitive control. *Aging, Neuropsychology, and Cognition*, 1-10.
- Dulaney, C.L., & Rogers, W.A. (1994). Mechanisms underlying reduction in Stroop interference with practice for young and old adults. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 20(2), 470.
- Erickson, K.I., Colcombe, S.J., Wadhwa, R., Bherer, L., Peterson, M.S., Scalf, P.E., ... & Kramer, A.F. (2007). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. *Neurobiology of aging*, 28(2), 272-283.
- Göthe, K., Oberauer, K., & Kliegl, R. (2007). Age differences in dual-task performance after practice. *Psychology and Aging*, 22(3), 596.
- Heinzel, S., Schulte, S., Onken, J., Duong, Q.L., Riemer, T.G., Heinz, A., ... & Rapp, M.A.(2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. *Aging, Neuropsychology, and Cognition*, (ahead-of-print), 1-28.
- Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. *Developmental science*, *12*(6), 978-990.
- Karbach, J., Mang, S., & Kray, J. (2010). Transfer of task-switching training in older age: The role of verbal processes. *Psychology and aging*, *25*(3), 677.
- Kramer, A.F., Hahn, S., & Gopher, D. (1999). Task coordination and aging: Explorations of executive control processes in the task switching paradigm. *Acta psychologica*, 101(2), 339-378.
- Kramer, A.F., Larish, J.F., & Strayer, D.L. (1995). Training for attentional control in dual task settings: A comparison of young and old adults. *Journal of Experimental Psychology: Applied*, *1*(1), 50.

- Kray, J., Eber, J., & Karbach, J. (2008). Verbal self-instructions in task switching: a compensatory tool for action-control deficits in childhood and old age?. *Developmental Science*, 11(2), 223-236.
- Kray, J., & Eppinger, B. (2006). Effects of associative learning on age differences in task-set switching. Acta Psychologica, 123(3), 187-203.
- Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. *Psychology and aging*, *15*(1), 126.
- Li, K.Z., Roudaia, E., Lussier, M., Bherer, L., Leroux, A., & McKinley, P.A. (2010). Benefits of cognitive dual-task training on balance performance in healthy older adults. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 65(12), 1344-1352.
- Lussier, M., Gagnon, C., & Bherer, L. (2012). An investigation of response and stimulus modality transfer effects after dual-task training in younger and older. *Frontiers in human neuroscience*, 6.
- Mahncke, H.W., Connor, B.B., Appelman, J., Ahsanuddin, O.N., Hardy, J.L., Wood, R.A., ... & Merzenich, M.M. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. *Proceedings of the National Academy of Sciences*, *103*(33), 12523-12528.
- MacKay-Brandt, A. (2011). Training attentional control in older adults. *Aging, Neuropsychology, and Cognition*, 18(4), 432-451.
- Mozolic, J.L., Long, A.B., Morgan, A.R., Rawley-Payne, M., & Laurienti, P.J. (2011). A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. *Neurobiology of aging*, *32*(4), 655-668.

Osaka, M., Yaoi, K., Otsuka, Y., Katsuhara, M., & Osaka, N. (2012). Practice on conflict tasks

promotes executive function of working memory in the elderly. *Behavioural Brain Research*, 233(1), 90-98.

- Richmond, L.L., Morrison, A.B., Chein, J.M., & Olson, I.R. (2011). Working memory training and transfer in older adults. *Psychology and aging*, *26*(4), 813.
- Rockstroh, S., Dietrich, B., & Pokorny, R. (1995). Memory and attention test performance of young and elderly subjects after retest practice. *International Psychogeriatrics*, *7*(3), 377-384.
- Shing, Y. L., Schmiedek, F., Lövdén, M., & Lindenberger, U. (2012). Memory updating practice across 100 days in the COGITO study. *Psychology and aging*, 27(2), 451.
- Stepankova, H., Lukavsky, J., Buschkuehl, M., Kopecek, M., Ripova, D., & Jaeggi, S. M. (2013). The malleability of working memory and visuospatial skills: A randomized controlled study in older adults. *Developmental Psychology*. Advance online publication.
- Stern, Y., Blumen, H.M., Rich, L.W., Richards, A., Herzberg, G., & Gopher, D. (2011). Space Fortress game training and executive function in older adults: A pilot intervention. *Aging, Neuropsychology, and Cognition*, 18(6), 653-677.
- Strobach, T., Frensch, P., Müller, H., & Schubert, T. (2012). Age-and practice-related influences on dual-task costs and compensation mechanisms under optimal conditions of dual-task performance. *Aging, Neuropsychology, and Cognition, 19*(1-2), 222-247.
- Strobach, T., Frensch, P., Müller, H.J., & Schubert, T. (2012). Testing the limits of optimizing dual-task performance in younger and older adults. *Frontiers in human neuroscience*, *6*.
- Sutter, C., Zöllig, J., & Martin, M. (2012). Plasticity of Verbal Fluency in Older Adults: A 90-Minute Telephone-Based Intervention. *Gerontology*, 59(1), 53-63.
- Tomporowski, P.D. (2003). Performance and perceptions of workload among young and older adults: Effects of practice during cognitively demanding tasks. *Educational Gerontology*,

29(5), 447-466.

- von Bastian, C.C., Langer, N., Jäncke, L., & Oberauer, K. (2012). Effects of working memory training in young and old adults. *Memory & cognition*, 1-14.
- Wang, M.Y., Chang, C.Y., & Su, S.Y. (2011). What's cooking?–Cognitive training of executive function in the elderly. *Frontiers in psychology*, 2.
- Wilkinson, A.J., & Yang, L. (2012). Plasticity of inhibition in older adults: Retest practice and transfer effects. *Psychology and aging*, 27(3), 606.
- Willis, S.L., Cornelius, S.W., Blow, F.C., & Baltes, P.B. (1983). Training research in aging: Attentional processes. *Journal of Educational Psychology*, 75(2), 257.
- Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2011). Potentials and limits of plasticity induced by working memory training in old-old age. *Gerontology*, *58*(1), 79-87.
- Zinke, K., Zeintl, M., Rose, N.S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working Memory Training and Transfer in Older Adults: Effects of Age, Baseline Performance, and Training Gains. *Developmental Psychology*, 50(1), 304-315.

Appendix 2: Supporting online material

	k (number of studies)	Effect size	LL 95% CI	UL 95% CI	Q _w				
Pre to Post gain effects									
By treatment									
Expt, target	59	0.91	0.83	1	286.53*				
Expt, near	32	0.68	0.56	0.79	96.03*				
Expt, far	25	0.37	0.24	0.49	16.81				
Active control, target	12	0.38	0.2	0.54	42.45*				
Active control, near	14	0.17	0.01	0.32	14.43				
Active control, far	14	0.17	0.01	0.33	4.87				
Passive control, target	11	0.13	-0.06	0.33	8.2				
Passive control, near	13	0.15	-0.02	0.32	4.04				
Passive control, far	11	0.14	-0.05	0.32	3.58				
By age group (only studies that included both younger and older adults)									
Older									
Expt, target	28	0.86	0.73	0.99	145.34*				
Expt, near	9	0.73	0.49	0.96	30.00*				
Expt, far	4	0.40	0.11	0.69	0.22				
Active control	7	0.34	0.10	0.58	0.45				
Passive control	7	0.08	-0.19	0.35	0.55				
Younger									
Expt, target	28	0.78	0.65	0.91	177.29*				
Expt, near	9	0.98	0.76	1.20	88.55*				
Expt, far	4	0.72	0.43	1.01	1.04				
Active control	7	0.33	0.09	0.57	6.15				

Table: Effect sizes and homogeneity statistics for selected groupings of the data.

Passive control	7	0.28	0.00	0.56	1.64				
By training type									
Executive function									
Expt, target	47	0.98	0.88	1.08	353.97*				
Expt, near	19	0.78	0.62	0.94	65.9*				
Expt, far	13	0.26	0.10	0.44	1.42				
Active control	10	0.33	0.14	0.52	2.74				
Passive control	12	0.16	-0.04	0.35	2.81				
Working memory									
Expt, target	12	1.06	0.88	1.24	28.06*				
Expt, near	13	0.57	0.41	0.74	26.9*8				
Expt, far	12	0.49	0.31	0.67	12.35				
Active control	9	0.13	-0.05	0.32	2.50				
Passive control	5	0.14	-0.08	0.36	0.35				
By far transfer measure									
EF/attention	14	0.20	0.04	0.36	10.89				
Gf	14	0.35	0.18	0.52	20.25				
episodic mem	11	0.40	0.18	0.55	3.49				
WM/STM	5	0.41	0.15	0.66	1.27				
Speed	10	0.43	0.23	0.64	7.22				
Other	10	0.42	0.21	0.63	11.70				
Cross-sectional comparisons at posttest									
Versus passive control									
Target	10	1.20	0.97	1.43	24.29*				
Near transfer	13	0.48	0.29	0.67	13.59				
Far transfer	10	0.36	0.15	0.57	10.83				
Versus active control									
Target	11	1.20	1.01	1.39	30.65				
Near transfer	15	0.56	0.41	0.72	107.41				
Far transfer	13	0.34	0.17	0.51	39.48				

Note: Asterisks denote significant heterogeneity of the effect size.