Supplemental Figures and Tables

Hepatic TRAP80 Selectively Regulates Lipogenic Activity of Liver X Receptor

Geun Hyang Kim, Gyun-Sik Oh, Jin Yoon, Gang Gu Lee, Ki-Up Lee, and Seung-Whan Kim

Supplemental Figure 1. Expression and purification of the LBD of LXRα fused to GST. (A) Schematic representation of LXRα LBD fused to GST. The carboxyl terminus (residues 159–445) of LXRα is fused to GST. (B) Overexpression and purification of GST–LXRα LBD (GST-LBD). Bacterially expressed GST-LXRα LBD was purified on glutathione-Sepharose beads and used as immobilized bait.

Supplemental Figure 2. TRAP230 and CRSP130 stimulate ligand-dependent activation of the *SREBP-1c* and *ABCA1* promoter. HepG2 cells were transfected with a luciferase reporter plasmid under the control of synthetic LXRE (A, n = 5), *SREBP-1c* promoter (B, n =7), or *ABCA1* promoter (C, n = 6). Data are presented as the mean ± SEM. T1317, T0901317. *P < 0.05, **P < 0.01, one-way ANOVA.

Supplemental Figure 3. LXR α -specific knockdown using siRNA in primary hepatocytes. Mouse primary hepatocytes were transfected with LXR α siRNA (sc-38829, Santa Cruz) or control siRNA (sc-37007, Santa Cruz). The transcript levels of LXR α (A) and LXR β (B) were analyzed by qRT-PCR.

Supplemental Figure 4. Differential effects of TRAP80 siRNA on SREBP-1c and ABCA1 transcript levels. HepG2 cells were transfected with TRAP80 siRNA (sc-38575, Santa Cruz) or control siRNA (sc-37007, Santa Cruz) (n = 3) and the transcript levels of TRAP80 (A), SREBP-1c (B), and ABCA1 (C) in the presence or absence of T0901317 were analyzed by qRT-PCR. Data are presented as the mean \pm SEM. *P < 0.05, ***P < 0.001, one-way ANOVA.

Supplemental Figure 5. Delivery of Ad-shTRAP80 to the liver via tail vein injection. (A) Mice were injected with Ad-shTRAP80 $(1 \times 10^{11} \text{ particles}/20 \text{ g})$ via the tail vein. Five days after injection, liver, lung, spleen, and kidney tissues were harvested and cryo-sections of each tissue were analyzed for GFP and DAPI staining by confocal microscopy. Original magnification, ×400. (B) Equivalent delivery of adenovirus to the livers of each experimental group (n = 5). Following administration of 50 mg/kg GW3965 to Ad-shCon or Ad-shTRAP80 injected mice, the livers were harvested and the mRNA levels of GFP were determined by qRT-PCR. Data are presented as the mean \pm SEM.

Supplemental Figure 6. Knockdown of hepatic TRAP80 ameliorates T0901317-induced fatty liver and the aberrant serum lipid profile. (A) Knockdown of hepatic TRAP80 by tail vein injection of Ad-shTRAP80. After Ad-shTRAP80 injection, the livers were harvested and the protein levels of TRAP80 were determined by immunoblot analysis. Relative band intensities were calculated by Image J. (B) Representative images of hematoxylin and eosin (H&E) and oil Red O-stained liver of Ad-shTRAP80 injected mice following the administration of 50 mg/kg T0901317 for 3 days. Original magnification, ×200. (C–G) Changes in the hepatic triglyceride and serum lipid profile in mice injected with Ad-shTRAP80 via the tail vein (shCon+vehicle, n = 5; shCon+T1317, n = 8; shTRAP80+vehicle, n = 5; shTRAP80+T1317, n = 9). Data are presented as the mean ± SEM. TG, triglyceride. *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA.

Supplemental Figure 7. Effects of GW3965 on serum lipoprotein profiles in AdshTRAP80 infected ApoE^{-/-} mice. Ad-shCon or Ad-shTRAP80 infected ApoE^{-/-} mice were administered with 50 mg/kg GW3965 for 3 days. Lipoproteins were separated from pooled mouse serum by FPLC (n = 5). The concentration of cholesterol (A) or triglyceride (B) in each eluted fraction was determined enzymatically.

Supplemental Figure 8. Effects of TRAP80 on T0901317-dependent expression of metabolic genes in the liver. The effects of TRAP80 knockdown on the transcript levels of lipogenesis- (A) or RCT-related genes (B) in the livers of mice treated with T0901317 (shCon+vehicle, n = 5; shCon+T1317, n = 8; shTRAP80+vehicle, n = 5; shTRAP80+T1317, n = 9). The mRNA levels were measured by qRT-PCR. Data are presented as the mean \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA.

Protein	Score ^A	Expect ^B	No. of peaks identified ^C	Masses matched ^D	Protein mass	Accession No.
TRAP230	134	6.2e-10	30	36.6%	247	Q93074
TRAP220	34	6.3	9	23.7%	168	Q15648
CRSP130	100	1.5e-6	18	33.3%	156.4	Q9ULK4
TRAP80	81	1.2e-4	16	19.3%	73	Q9NVC6

Supplemental Table 1. Results of MALDI-TOF analysis of LXRα-interacting proteins.

^A Protein score is a measure of the statistical significance of a match. A score greater than 65 is significant. (p<0.05, default significance threshold)

- ^BNumber of matches with equal or better scores expected to occur by chance alone. This is directly equivalent to the E-value in a BLAST search result. The lower the expectation value, the more significant the score.
- ^C Number of mass values matched.

^D Percentage of number of mass values matched in number of mass values searched

Cloning Oligo Name	Sequence (5'→3') ^A
mSREBP-1c (-550/+42) For	CGGGGTACCCCCCCCTCCTTGAAACAA
mSREBP-1c (-550/+42) Rev	CCGCTCGAGCCTAGGGCGTGCAGACGC
mSREBP-1c (mt LXRE a) For	ACGACAG <u>A</u> GT <u>C</u> CGCCAG <u>A</u> A <u>T</u> CCCCAGC
mSREBP-1c (mt LXRE a) Rev	GCTGGGGATTCTGGCGGACTCTGTCGT
mSREBP-1c (mt LXRE b) For	AAGGCGGA <u>A</u> G <u>T</u> CCGCTAG <u>A</u> A <u>T</u> CCCCGGC
mSREBP-1c (mt LXRE b) Rev	GCCGGGG <u>A</u> T <u>T</u> CTAGCGG <u>A</u> C <u>T</u> TCCGCCTT
hABCA1 (-928/+101) For	CGGGGTACCTAAGTTGGAGGTCTGGAG
hABCA1 (-928/+101) Rev	CCGCTCGAGGCTCTGTTGGTGCGCG
hABCA1 (mt LXRE) For	AGGCTTTGTGTGATAGTAAC <u>TG</u> CTGCGCT
hABCA1 (mt LXRE) Rev	AGCGCAG <u>CA</u> GTTACTATCACACAAAGCCT
Ad-shTRAP80 (1587) For	CGCGTCAGAGATGGTCGGGTAATCATTGATATCCGTGATTACCCGACCATCT
	СТТТТТТССААА
Ad-shTRAP80 (1587) Rev	AGCTTTTGGAAAAAAAGAGATGGTCGGGTAATCACGGATATCAATGATTACCC
	GACCATCTCTGA

Supplemental Table 2. List of primers used for cloning.

^A Mutated nucleotides are underlined.

Suppremental rabie of hist of primers abea for only	Su	ppl	lemental	Table 3.	List of	primers	used for	ChIP.
---	----	-----	----------	----------	---------	---------	----------	-------

ChIP Oligo Name	Sequence (5'→3')	Notes	
mSREBP-1c (LXRE) For	AGGCTCTTTTCGGGGATGG		
mSREBP-1c (LXRE) Rev	TGGGGTTACTGGCGGTCAC		
mABCA1 (LXRE) For	GGGGAAAGAGGGAGAGAACAG		
mABCA1 (LXRE) Rev	GAATTACTGGTTTTTGCCGC		
mSREBP-1c (Exon) For	TTTGTCATTGGCTGTGGTCTTC	Non-LXRE	
mSREBP-1c (Exon) Rev	CGGCATGGTCCTGATTGC	Non-LXRE	
mABCA1 (Exon) For	GGCAGTGCCTTTGTAGCCTATG	Non-LXRE	
mABCA1 (Exon) Rev	GGTTCCACACCAGAGTTTCACA	Non-LXRE	

	_	
Gene name	Forward primer sequences	Reverse primer sequences
hTRAP80	CCTTCCGAGTAGCTGGGACC	AAATTAGCCAGGCGTGGTTG
hSREBP-1c	CCATCTGTGAGAAGGCCAGTG	GGTGTGGTAGCCAGGCTGTC
hABCA1	GAGAAGCTTTCAACGAGACTAACCAG	TGAAGCGAGATATGGTCCGG
hRPS29	CGCGAAGGATATCGGTTTCA	GCCCCGGATAATCCTCTGA
mTRAP80	CCTTGGGACTCTGTGAGGAA	GTGGACTCTGTTTGGGAGGA
mLXRα	GCAGCTGGGCATGATCG	CTGTTACACTGTTGCTGGGCA
mLXRβ	TACCTCCGCCACGTCACC	GGATCAGTCTCCTGCCCCTC
mSREBP-1c	CAGCCATGGATTGCACATTTG	GTCTTGGTTGTTGATGAGCTGG
mFAS	CTGCAGCTGTCAGTGTGAAGAAG	GCAGCATTTTTACCAGGTTGGT
mSCD1	AGCTCAGTCTCACTCCTTCCCTTA	CAGCCAGCCTCTTGACTATTCC
mABCA1	GACCCGTACTCTCGCAGGG	CCTTGCCGGTATTTTAGCAGG
mABCG1	TTCATCGTCCTGGGCATCTT	GAAATAGGCGATGAGCCGC
mABCG5	TCAATGAGTTTTACGGCCTGAA	GCACATCGGGTGATTTAGCA
mABCG8	CGGAGCACTGTGCCTACGT	CGCAGGTTTGTCAGCCAGTA
mIDOL	TGTGGAGCCTCATCTCATCTT	AGGGACTCTTTAATGTGCAAGAA
mCOX-2	AACCGCATTGCCTCTGAAT	CATGTTCCAGGAGGATGGAG
miNOS	CGAAACGCTTCACTTCCAA	TGAGCCTATATTGCTGTGGCT
mRPS29	CGCAAATACGGGCTGAACA	GCCTATGTCCTTCGCGTACTG

Supplemental Table 4. List of primers used for gene expression analysis by qRT-PCR.