
Supplementary Table 1. Number of identified editing sites in the ENCODE data sets 
(cytoplasmic PolyA+ RNA) 
 

 Alu sites Non-Alu sites     

Cell line 
Editing 
events 

AG, 
% 

Editing 
events 

AG, 
% 

Total editing 
events 

Total 
non-AG 

Total 
AG, % 

Total raw reads 
pairs (in millions) 

H1hESC 19781 99.9 772 93.0 20553 80 99.6 97.2 
HeLa-S3 22803 99.7 750 90.8 23553 140 99.4 225.6 
HepG2 8708 99.7 339 86.4 9047 72 99.2 224.4 

HUVEC 7833 99.8 389 82.3 8222 83 99.0 230 
K562 15636 99.4 425 81.2 16061 180 98.9 213.3 

NHEK 7927 99.7 467 90.1 8394 66 99.2 222.9 
 



Number 
of sites %AG

Number 
of sites %AG Accuracy

Overlap rel. to
Genome-aware

Number 
of sites %AG Accuracy

Overlap rel. to
Genome-aware

Number 
of sites %AG Accuracy

Number 
of sites %AG Accuracy

41027 98.8% 37591 98.6% 98.1% 90.0% 8307 90.2% 85.0% 18.5% 51082 97.1% 97.8% 35026 86.4% 97.0%
Non-synonymous 119 100.0% 107 98.2% 100.0% 89.9% 31 100.0% 83.9% 24.3% 126 97.7% 100.0% 103 94.5% 100.0%

Synonymous 58 100.0% 53 98.1% 100.0% 91.4% 15 100.0% 86.7% 24.5% 67 97.1% 100.0% 51 96.2% 100.0%
UTR 7056 99.7% 6814 99.1% 99.6% 96.2% 2792 99.1% 86.7% 35.5% 8690 98.7% 99.7% 5994 96.8% 99.3%

noncoding 2555 99.4% 2375 98.8% 99.2% 92.3% 688 97.0% 82.0% 23.7% 3154 98.0% 99.5% 2262 94.9% 98.9%
Intronic 22017 99.8% 19752 99.0% 99.2% 89.0% 4135 98.3% 89.0% 18.6% 28353 97.7% 99.5% 23994 95.8% 99.4%

Intergenic 7952 99.6% 7030 99.1% 99.4% 87.9% 136 100.0% 68.4% 1.3% 7344 99.1% 99.5% 812 97.0% 99.4%
Non-synonymous NA NA 1 NA NA NA NA NA NA NA 1 NA NA NA NA NA

UTR 20 71.4% 20 76.9% 85.0% 85.0% 8 66.7% 75.0% 30.0% 41 83.7% 87.8% 15 46.9% 80.0%
noncoding 10 52.6% 11 64.7% 81.8% 90.0% 3 50.0% 66.7% 18.2% 35 74.5% 80.0% 8 47.1% 25.0%

Intronic 134 90.5% 149 81.4% 79.2% 88.1% 15 68.2% 60.0% 6.0% 695 88.5% 85.6% 53 41.7% 77.4%
Intergenic 96 93.2% 86 92.5% 94.2% 84.4% NA NA NA NA 109 93.2% 94.5% NA NA NA

Non-synonymous 13 18.1% 35 72.9% 34.3% 92.3% 25 18.9% 4.0% 2.9% 59 68.6% 39.0% 91 16.5% 13.2%
Synonymous 7 22.6% 31 73.8% 22.6% 100.0% 15 17.2% 6.7% 3.2% 51 77.3% 17.6% 65 19.4% 9.2%

UTR 205 64.5% 257 82.4% 71.6% 89.8% 166 36.2% 57.8% 37.4% 416 78.0% 72.8% 407 24.9% 52.8%
noncoding 100 46.1% 137 77.0% 65.0% 89.0% 45 35.4% 51.1% 16.8% 225 71.0% 68.0% 166 26.1% 57.8%

Intronic 418 81.6% 467 83.4% 77.1% 86.1% 229 49.4% 62.9% 30.8% 1404 83.0% 76.9% 959 37.1% 69.1%
Intergenic 267 82.2% 266 87.5% 85.7% 85.4% 4 44.4% 100.0% 1.5% 312 88.6% 87.2% 46 38.0% 69.6%

41027 98.8% 37956 97.5% 97.2% 89.9% 8445 85.3% 83.5% 17.2% 51985 96.3% 96.5% 35470 82.4% 95.8%
Non-synonymous 119 100.0% 108 99.1% 99.1% 89.9% 31 96.9% 83.9% 21.8% 127 97.7% 99.2% 103 93.6% 100.0%

Synonymous 58 100.0% 53 98.1% 100.0% 91.4% 15 100.0% 86.7% 22.4% 67 97.1% 100.0% 52 96.3% 98.1%
UTR 7056 99.7% 6868 98.5% 99.2% 96.5% 2798 99.0% 86.5% 34.3% 8736 98.2% 99.4% 6011 96.3% 99.1%

noncoding 2555 99.4% 2393 98.0% 99.0% 92.7% 691 96.6% 81.6% 22.1% 3179 97.4% 99.2% 2267 93.9% 98.7%
Intronic 22017 99.8% 19834 98.3% 98.7% 88.9% 4145 98.2% 88.8% 16.7% 28630 97.1% 99.1% 24072 95.0% 99.1%

Intergenic 7952 99.6% 7054 98.4% 99.0% 87.9% 136 100.0% 68.4% 1.2% 7369 98.3% 99.1% 817 96.5% 98.8%
UTR 20 71.4% 23 67.6% 73.9% 85.0% 9 52.9% 66.7% 30.0% 49 72.1% 73.5% 16 37.2% 75.0%

noncoding 10 52.6% 13 65.0% 53.8% 70.0% 2 28.6% 100.0% 20.0% 43 76.8% 62.8% 9 36.0% 22.2%
Intronic 134 90.5% 167 77.7% 70.1% 87.3% 14 43.8% 64.3% 6.7% 780 86.9% 76.8% 62 37.1% 66.1%

Intergenic 96 93.2% 92 91.1% 88.0% 84.4% NA NA NA NA 118 92.9% 89.0% 2 40.0% 0.0%
Non-synonymous 13 18.1% 47 68.1% 25.5% 92.3% 36 16.7% 2.8% 7.7% 89 71.8% 25.8% 128 16.0% 9.4%

Synonymous 7 22.6% 38 79.2% 18.4% 100.0% 26 18.1% 3.8% 14.3% 71 81.6% 12.7% 84 17.2% 7.1%
UTR 205 64.5% 310 76.9% 59.0% 89.3% 210 32.1% 45.7% 46.8% 519 74.5% 58.0% 498 22.6% 43.2%

noncoding 100 46.1% 150 71.4% 58.7% 88.0% 52 26.5% 44.2% 23.0% 257 69.1% 59.5% 190 23.0% 50.5%
Intronic 418 81.6% 522 78.4% 69.5% 86.8% 270 39.3% 53.3% 34.4% 1611 81.5% 67.5% 1103 32.1% 60.1%

Intergenic 267 82.2% 284 82.8% 80.3% 85.4% 10 45.5% 40.0% 1.5% 340 84.6% 80.0% 56 36.8% 57.1%

All 76.3% 85.4% 77.7% 89.1% 62.5% 63.2% 19.3% 86.6% 78.4% 56.2% 65.7%
Coding NA NA NA NA NA NA NA NA NA NA NA

all non-coding 77.0% 78.9% 85.0% 86.9% 61.6% 67.2% 18.1% 85.0% 87.0% 45.2% 60.8%
Coding 20.3% 73.4% 28.4% 96.2% 18.1% 5.3% 3.0% 72.9% 28.3% 17.9% 11.2%

all non-coding 68.6% 82.6% 74.8% 87.6% 41.4% 68.0% 21.6% 80.2% 76.2% 31.5% 62.3%
Coding NA NA NA NA NA NA NA NA NA NA NA

all non-coding 77.0% 75.4% 71.5% 81.7% 41.8% 77.0% 18.9% 82.2% 75.5% 37.6% 40.8%
Coding 20.3% 73.6% 22.0% 96.2% 17.4% 3.3% 11.0% 76.7% 19.3% 16.6% 8.3%

all non-coding 68.6% 77.4% 66.9% 87.4% 35.8% 45.8% 26.4% 77.4% 66.3% 28.6% 52.7%

Multiple data sets method
(Pooled read alignments)**

GIREMI
(union of results)***

Alu

Repetitive 
non-Alu

Non-
repetitive

Supplementary Table 2: Performance of GIREMI in different types of regions (accuracy measured as 1-% SNPs among predicted editing sites in each category) 

                                                   Averages

30% SNPs 
unknown

50% SNPs 
unknwon

Repeitive 
non-Alu

Non-
repetitive
Repeitive 
non-Alu

Non-
repetitive

Data Region Location
Genome-aware GIREMI Multiple data sets method

(Overlap of two data sets)*

NOTE: The number of editing sites shown for GIREMI is slightly different from those in Fig. 1 because only one of the 9 randomized trials for SNP exclusion was used (see Fig. 1 legend).

**Multiple data set methods - pooled read alignments: GM12878 and YH mapped reads were pooled together, then editing sites were identified using the pooled reads.  Thus the results shown here were derived from two data sets.
*** GIREMI (union of results): results of GIREMI for GM12878 and YH data (analyzed separately) were combined.

GM12878
(50% SNPs 

assumed 
unknown)

GM12878
(30% SNPs 

assumed 
unknown)

All

All

*Multiple data set methods - Overlap of two data sets: editing sites identified in GM12878 and YH RNA-Seq data separately (see Supplementary Note 3), then GM12878 editing sites were called by requiring their presence in YH.

Alu

Repetitive 
non-Alu

Non-
repetitive



Number of 
sites %AG Number of 

sites %AG Number of 
sites %AG Number of 

sites %AG Number of 
sites %AG

6351 97.5% 900 74.4% 754 95.2% 3023 69.5% 2549 97.0%
Non-synonymous 9 100.0% 3 100.0% 3 100.0% 9 100.0% 9 100.0%

Synonymous 6 100.0% 3 100.0% 3 100.0% 5 100.0% 5 100.0%
UTR 243 96.4% 198 97.1% 173 99.4% 244 93.1% 213 99.1%

noncoding 170 98.3% 78 88.6% 67 97.1% 132 93.0% 114 98.3%
Intronic 3856 98.2% 414 91.0% 367 94.6% 1618 95.4% 1467 97.5%

Intergenic 146 100.0% 28 100.0% 25 100.0% 104 99.0% 93 100.0%
Non-synonymous NA NA NA NA NA NA 1 100.0% NA NA

UTR 3 100.0% 1 50.0% NA NA 2 33.3% 1 100.0%
noncoding 3 100.0% NA NA NA NA 1 25.0% 1 100.0%

Intronic 100 99.0% 18 90.0% 16 100.0% 44 73.3% 37 100.0%
Intergenic 1 100.0% 1 100.0% NA NA 2 100.0% 1 100.0%

Non-synonymous 11 61.1% 20 31.7% 6 54.5% 51 21.6% 10 62.5%
Synonymous 2 66.7% 7 35.0% NA NA 22 19.1% 2 66.7%

UTR 33 86.8% 33 21.9% 15 93.8% 86 18.2% 24 88.9%
noncoding 36 92.3% 13 40.6% 7 87.5% 38 33.0% 14 87.5%

Intronic 1704 96.7% 69 55.6% 61 89.7% 641 59.1% 541 95.9%
Intergenic 28 80.0% 14 87.5% 11 100.0% 23 65.7% 17 85.0%

12436 88.7% 6591 81.6% 6044 88.9% 9461 73.7% 8412 89.4%
Non-synonymous 42 97.7% 21 95.5% 20 100.0% 34 91.9% 30 96.8%

Synonymous 33 97.1% 26 100.0% 25 100.0% 32 100.0% 30 100.0%
UTR 2931 94.5% 1865 94.7% 1743 95.7% 2645 93.1% 2445 95.8%

noncoding 1418 84.8% 843 85.2% 798 85.9% 1122 84.0% 1043 85.4%
Intronic 7148 87.6% 3342 84.5% 3101 86.4% 4614 85.0% 4263 87.3%

Intergenic 264 94.0% 134 89.3% 114 92.7% 206 89.6% 178 93.2%
Non-synonymous NA NA NA NA NA NA NA NA NA NA

UTR 12 100.0% 3 42.9% 2 100.0% 8 34.8% 7 100.0%
noncoding 3 75.0% 1 50.0% 1 100.0% 4 33.3% 3 75.0%

Intronic 35 100.0% 26 76.5% 19 100.0% 39 63.9% 27 100.0%
Intergenic NA NA NA NA NA NA NA NA NA NA

Non-synonymous 18 62.1% 29 24.4% 8 53.3% 82 17.9% 15 60.0%
Synonymous 9 56.3% 11 21.2% 3 50.0% 28 13.1% 6 50.0%

UTR 110 82.7% 87 26.7% 45 83.3% 257 22.9% 89 84.8%
noncoding 83 87.4% 41 38.3% 27 79.4% 102 32.1% 60 85.7%

Intronic 300 82.9% 146 49.2% 124 83.8% 270 38.8% 200 86.2%
Intergenic 30 90.9% 16 76.2% 14 93.3% 18 45.0% 16 94.1%

14065 87.0% 6559 81.3% 5947 88.9% 10080 72.7% 8876 89.2%
Non-synonymous 52 98.1% 21 95.5% 19 100.0% 39 95.1% 36 97.3%

Synonymous 49 94.2% 27 100.0% 26 100.0% 37 100.0% 34 100.0%
UTR 3415 93.6% 1868 94.4% 1745 95.4% 2952 92.8% 2735 95.3%

noncoding 1514 85.3% 853 85.3% 797 87.1% 1167 84.6% 1076 87.1%
Intronic 8212 85.0% 3315 84.3% 3016 86.1% 4905 84.4% 4439 86.8%

Intergenic 354 91.5% 140 89.7% 127 92.0% 248 90.2% 219 92.0%
Non-synonymous NA NA NA NA NA NA NA NA NA NA

UTR 2 100.0% 2 40.0% 2 100.0% 6 30.0% 2 100.0%
noncoding 2 100.0% 1 100.0% 1 100.0% 4 66.7% 1 100.0%

Intronic 33 100.0% 22 75.9% 18 100.0% 30 53.6% 24 100.0%
Intergenic NA NA 1 100.0% NA NA 1 100.0% NA NA

Non-synonymous 16 53.3% 25 21.0% 6 66.7% 75 14.9% 12 57.1%
Synonymous 7 46.7% 12 22.6% 5 83.3% 34 14.2% 7 53.8%

UTR 97 82.9% 85 25.0% 39 84.8% 240 19.9% 83 84.7%
noncoding 51 68.9% 41 39.4% 23 79.3% 79 24.8% 36 70.6%

Intronic 230 82.4% 127 46.0% 105 81.4% 239 32.8% 150 81.5%
Intergenic 31 91.2% 19 73.1% 18 90.0% 24 46.2% 22 88.0%

26715 89.6% 43547 95.4% 55932 80.2% 43547 95.4%
Non-synonymous 82 97.6% 113 98.3% 144 92.3% 113 98.3%

Synonymous 61 93.8% 77 97.5% 88 91.7% 77 97.5%
UTR 4809 93.9% 5862 97.6% 7353 91.8% 5862 97.6%

noncoding 2307 85.4% 3124 93.8% 3905 84.0% 3124 93.8%
Intronic 16129 88.7% 30136 95.3% 38319 86.2% 30136 95.3%

Intergenic 635 93.9% 1045 97.4% 1334 90.3% 1045 97.4%
UTR 15 100.0% 24 96.0% 29 50.9% 24 96.0%

noncoding 7 87.5% 6 85.7% 9 40.9% 6 85.7%
Intronic 141 99.3% 156 99.4% 224 70.9% 156 99.4%

Non-synonymous 34 56.7% 46 65.7% 84 15.1% 46 65.7%
Synonymous 16 51.6% 13 52.0% 30 11.7% 13 52.0%

UTR 188 81.7% 246 77.6% 400 18.2% 246 77.6%
noncoding 141 81.5% 206 91.6% 295 40.5% 206 91.6%

Intronic 2084 93.3% 2385 95.6% 3567 58.1% 2385 95.6%
Intergenic 66 84.6% 108 90.8% 151 25.7% 108 90.8%

*Multiple data set methods - Overlap of 2 out of 3 data sets: editing sites identified in the 3 RNA-Seq data separately), then for each data set, editing sites were called by requiring their presence in 2 out 3 samples
**Multiple data set methods - Overlap of 2 out of 17 data sets: editing sites identified in the 3 RNA-Seq data separately), then for each data set, editing sites were called by requiring their presence in 2 out 17 samples.
*** GIREMI (union of results): results of GIREMI for the 3 data sets  (separately) were combined. Pooled 3 samples - mapped reads of the three data sets were pooled together,
 then editing sites were identified using the pooled reads with GIREMI or the Multiple data sets methods.

Multiple data sets method
(Overlap: 2/3 data sets)* Overlap with GIREMI Multiple data sets method

(Overlap: 2/17 data sets)** Overlap with GIREMI

Alu

Repetitive non-
Alu

Non-repetitive

SRR815232

Data Region Location
GIREMI

Alu

Repetitive non-
Alu

Non-repetitive

Alu

Supplementary Table 3: Comparison of GIREMI and the "mutliple data sets" methods on a set of primary human brain tissue RNA-Seq data.           
(sample information in Supplementary Table 5)

All

SRR627451

All

SRR663681

All

GIREMI
(Pooled 3 samples)

Repetitive non-
Alu

Non-repetitive

All

All 3 data 
sets ***

Repetitive non-
Alu

Overlap (Pooled 3 samples)

Alu

Non-repetitive

GIREMI
(union of results)

Multiple data sets method
(Pooled 3 samples)



Supplementary Table 4. Identification of recoding sites by GIREMI or mutual information 
(MI) alone (sample IDs same as in Supplementary Table 5).  
 

Samples 

No. of sites 
predicted 

by 
GIREMI 

No. of 
sites as 
input to 

GIREMI* 

GIREMI 
Sensitivity 
(GIREMI_ 
predicted 

/input) 

No. of sites 
predicted 

by MI 

No. of 
sites as 
input to 

MI** 

MI_predicted/ 
GIREMI_ Predicted 

SRR595926 9 13 69.2% 4 4 44.4% 
SRR607679 5 7 71.4% 2 3 40.0% 
SRR607839 5 8 62.5% 4 4 80.0% 
SRR608456 7 9 77.8% 0 0 0.0% 
SRR613627 6 8 75.0% 0 0 0.0% 
SRR613747 6 10 60.0% 0 0 0.0% 
SRR627449 7 9 77.8% 3 3 42.9% 
SRR627451 11 13 84.6% 6 9 54.5% 
SRR627455 11 13 84.6% 4 4 36.4% 
SRR627462 10 11 90.9% 6 6 60.0% 
SRR658573 6 8 75.0% 4 4 66.7% 
SRR660933 8 13 61.5% 4 6 50.0% 
SRR660969 3 5 60.0% 0 0 0.0% 
SRR662162 3 4 75.0% 1 1 33.3% 
SRR662233 2 8 25.0% 0 0 0.0% 
SRR663681 11 15 73.3% 4 4 36.4% 
SRR810319 7 10 70.0% 0 0 0.0% 
SRR815232 6 8 75.0% 1 1 16.7% 
SRR817751 14 18 77.8% 6 6 42.9% 
SRR818033 7 9 77.8% 2 2 28.6% 
SRR821690 3 4 75.0% 0 0 0.0% 

Total 
sensitivity 43 47 91.5% 32 34 74.4% 

Average 
per sample 
sensitivity 

    71.4%    30.1% 

 
 
 *"No. of sites as input to GIREMI" refers to the total number of SNVs (required to have ≥5 
reads) that were tested by GIREMI (MI followed by GLM) to predict editing sites.  
 
**"No. of sites as input to MI" refers to the number of SNVs that were testable by the MI step, 
required to have ≥5 reads harboring two SNVs.  



Supplementary Table 5. RNA-Seq data obtained from the GTEx project. Sample IDs are 
SRR followed by the numeric ID shown. Samples in red were excluded from further analysis 
because of low sequencing coverage/quality. 
 
 

Subject 
ID Cerebellum Cortex 

Frontal 
Cortex Hippocampus Lung Thyroid Heart 

Skeletal 
Muscle 

N7MS 627451 627455 595926 608456,600724 607839 607679 608096 612839 
NPJ8 627462 627449 613627 821690 627457 602951 598148 601695 
RU72 613747 NA 612563 NA 614948 614743 612875 615044 
T6MN 663681 660933 662233 660969 662162 658573 659637 661639 

WWYW 815232 810319 818033 817751 NA 808886 815517 816226 



Supplementary Table 6. Number of identified editing sites in the GTEx data sets. (Samples 
in red were excluded from further analysis because of low sequencing coverage/quality.) 
 

  Alu sites Non-Alu sites     

Tissue Data ID 
Editing 

sites 
AG, 
% 

Editing 
sites 

AG, 
% 

Total 
sites 

Total 
AG, 
% 

Raw read 
pairs  

(x million) 

Uniquely 
mapped read 

pairs  
(x million) 

Cerebellum SRR613747 4578 90.7 260 85 4838 90.4 56 20.1 
Cerebellum SRR627451 4430 98.1 1921 95.9 6351 97.5 34.5 15.6 
Cerebellum SRR627462 7452 97.6 1974 95.3 9426 97.1 36.5 15.4 
Cerebellum SRR663681 11836 89 600 83.4 12436 88.7 48.8 31.1 
Cerebellum SRR815232 13596 87.3 469 80 14065 87 69.1 41.4 

Cortex SRR627449 2848 97.2 1037 95.5 3885 96.8 32.2 15.5 
Cortex SRR627455 3577 97.7 1311 96.5 4888 97.4 43.5 15.7 
Cortex SRR660933 5067 91.9 622 93.6 5689 92.1 54.9 29.9 
Cortex SRR810319 4174 91.1 316 84.2 4490 90.6 65.1 35.4 

Frontal cortex SRR595926 3358 89.8 433 90.1 3791 89.8 61.8 31.4 
Frontal cortex SRR612563 185 95.7 22 90.9 207 95.2 58 5.7 
Frontal cortex SRR613627 4685 90.5 320 78.4 5005 89.8 50.8 26.1 
Frontal cortex SRR662233 4255 91 413 94.4 4668 91.3 72.8 40.8 
Frontal cortex SRR818033 6655 90.6 371 85.7 7026 90.3 65.9 39.3 
Hippocampus SRR600724 390 87.7 49 95.9 439 88.6 104.5 8.1 
Hippocampus SRR608456 3543 89 273 91.9 3816 89.3 56.1 26 
Hippocampus SRR660969 1391 90.7 118 97.5 1509 91.3 58.1 30.9 
Hippocampus SRR817751 7270 90.2 508 87 7778 90 68.5 39.4 
Hippocampus SRR821690 2284 92.6 130 86.2 2414 92.3 94.4 35.7 

Heart SRR598148 1337 95.7 100 88 1437 95.1 53.7 19.4 
Heart SRR608096 2337 96.6 206 89.3 2543 96 58.5 24.2 
Heart SRR612875 1449 97.8 154 87.7 1603 96.8 53.7 17.9 
Heart SRR659637 3190 96.8 356 91 3546 96.2 50.2 26.6 
Heart SRR815517 4136 96.7 295 88.1 4431 96.1 69.1 28.5 
Lung SRR607839 9499 97.6 1346 95.5 10845 97.3 49.8 23.8 
Lung SRR614948 3112 97.5 391 95.4 3503 97.3 38.1 12.3 
Lung SRR627457 6350 99.1 720 97.5 7070 99 42.9 13.2 
Lung SRR662162 6753 96.5 779 95.5 7532 96.4 40.8 23.2 

Skeletal muscle SRR601695 295 91.9 36 66.7 331 89.1 96.2 26.5 
Skeletal muscle SRR612839 965 93.4 111 85.6 1076 92.6 52 23.2 
Skeletal muscle SRR615044 131 83.2 25 52 156 78.2 50.2 15.9 
Skeletal muscle SRR661639 67 88.1 17 58.8 84 82.1 39 9.8 
Skeletal muscle SRR816226 1416 96.4 110 82.7 1526 95.4 60.7 33.3 

Thyroid SRR602951 3282 93.6 271 91.1 3553 93.4 100.3 24.4 
Thyroid SRR607679 4563 95.2 660 92.7 5223 94.8 80.8 29.3 
Thyroid SRR614743 3615 96.5 406 92.1 4021 96 48.9 15.7 
Thyroid SRR658573 18335 94.8 1384 92.2 19719 94.6 55.5 35.7 
Thyroid SRR808886 10878 95.8 840 88.2 11718 95.3 50 32.1 



Supplementary Table 7. Gene ontology analysis of genes with tissue-specific editing (TSE). 
All GO categories shown here were associated with a p value less than 0.0001. 
 

GO ID GO Description Tissues with TSE 
GO:0045454 cell redox homeostasis Cortex,Frontal cortex,Thyroid 
GO:0070469 respiratory chain Frontal cortex,Hippocampus 
GO:0007059 chromosome segregation Frontal cortex,Hippocampus 
GO:0008635 activation of caspase activity by cytochrome c Cortex,Frontal cortex 
GO:0006309 DNA fragmentation involved in apoptotic nuclear change Cortex,Frontal cortex 
GO:0006366 transcription from RNA polymerase II promoter Lung,Thyroid 
GO:0008233 peptidase activity Lung,Thyroid 
GO:0006465 signal peptide processing Lung,Thyroid 
GO:0004437 inositol or phosphatidylinositol phosphatase activity Hippocampus 
GO:0006120 mitochondrial electron transport, NADH to ubiquinone Hippocampus 
GO:0005747 mitochondrial respiratory chain complex I Hippocampus 
GO:0044237 cellular metabolic process Hippocampus 
GO:0022900 electron transport chain Hippocampus 
GO:0008137 NADH dehydrogenase (ubiquinone) activity Hippocampus 
GO:0009055 electron carrier activity Cortex 
GO:0006916 anti-apoptosis Cortex 
GO:0006479 protein amino acid methylation Frontal cortex 
GO:0045333 cellular respiration Frontal cortex 
GO:0006364 rRNA processing Thyroid 
GO:0006954 inflammatory response Lung 
GO:0007507 heart development Lung 
GO:0008047 enzyme activator activity Lung 
GO:0009615 response to virus Lung 
GO:0006383 transcription from RNA polymerase III promoter Lung 

 
  



Supplementary Notes: 

 

Supplementary Note 1 – Predicting RNA editing via mutual information (MI) in GIREMI 

 

The calculation of mutual information (MI) in GIREMI utilizes (pairs of) reads that harbor two 

SNVs (SNPs, editing or unknown type) and determines their degree of allelic linkage. As shown 

in Fig. 1b, MI distributions for combinations of SNPs and editing sites (defined using the 

genome sequencing data) are readily distinguishable. Thus, MI is an effective measure to 

discriminate editing sites from SNPs. Fig. 1b shows the MI data for SNP pairs, which is the 

distribution used in GIREMI for predicting editing sites. In contrast, Supplementary Fig. 1a 

(upper panel) shows the MI values of SNPs relative to any other SNVs in their neighborhood, 

some of which may be editing sites. Consistently, we observed a minor peak at lower MI range 

indicating SNP-editing site pairs. It should be noted that this distribution was not used in 

GIREMI. We also examined the MI values for editing sites and SNPs located in different types 

of regions (Alu, repetitive non-Alu, non-repetitive). It can be appreciated that the MI values are 

generally similar for different types of editing sites, but those in non-Alu regions tend to have a 

small fraction of sites with higher MI values (Supplementary Fig. 1a, lower panel), suggesting 

that these editing sites may indeed be SNPs. Similarly, the MI distribution of SNPs also has a 

pronounced (Alu SNPs) or minor (non-Alu SNPs) peak near the lower MI range, indicating that 

they are likely paired with editing sites.  

 

It should be noted that the MI step alone does not render an advantage for predicting SNPs 

(which is not the goal of GIREMI as an RNA editing predictor). In the GM12878 data, if 50% 

SNPs were assumed to be unknown, 12,359 SNPs were excluded from the MI calculation due to 

lack of neighboring SNVs or inadequate reads (< 5) covering the SNP and its neighboring SNVs. 

A total of 4,815 SNPs were included for MI calculation, among which 1,323 SNPs were 

incorrectly predicted as RNA editing sites based on their MI values.  Thus, 3,492 (72.5%) of the 

4,815 SNPs remained to be SNPs.  If 30% SNPs were assumed to be unknown, 11,298 SNPs 

were excluded from the MI calculation due to lack of neighboring SNVs or inadequate reads 

(<5) covering the SNP and its neighboring SNVs. A total of 2,903 SNPs were included for MI 



calculation, among which 740 SNPs were incorrectly predicted as RNA editing sites based on 

their MI values.  Thus, 2,163 (74.5%) of the 2,903 SNPs remained to be SNPs. Overall, SNP 

prediction using MI alone is obviously not sensitive, nor very accurate. 

 

In general, the requirement of multiple SNV-containing reads in MI calculation suggests that this 

step alone may have limited sensitivity in pinpointing editing sites that are in isolation from other 

editing sites or SNPs. Although the vast majority of A-to-I editing sites are located in Alu 

elements and in close proximity with other editing sites, a relatively small number of editing 

sites, especially those in coding regions, are located in isolation from others.  To complement the 

MI step, GIREMI includes a second-step based on GLM (Online Methods). Importantly, the 

predicted editing sites by MI were used as training data to drive the GLM parameter estimation. 

Thus, the GLM is data set-specific and does not rely on pre-parameterization of the model.  

Overall, GIREMI has better sensitivity and accuracy than another genome-independent editing 

prediction method (see Supplementary Note 3).   

 

To better understand the sensitivity of GIREMI for isolated editing sites, we examined its 

prediction of known recoding sites1. The analysis is fully described in Supplementary Note 5. 

Here, we only elaborate on the identification of these sites by the MI method. Overall, GIREMI 

(combining MI and GLM steps) has a high sensitivity in predicting these recoding sites 

(Supplementary Note 5). We then examined how many of the recoding sites were identified by 

the MI step. Among all GIREMI-predicted recoding sites, 74.4% were identifiable in the MI step 

in at least one sample (Supplementary Table 4). For each sample, an average of 30% of the 

identified recoding sites were resulted from the MI step, with the rest predicted by the GLM step.  

It is expected that the sensitivity to recoding sites in the MI step alone is highly dependent on the 

genetic background and editome profile of a specific sample. We thus examined the type of 

mismatches paired with the MI-identified recoding sites (i.e., those harbored in the same pairs of 

reads as the MI-identified recoding sites). As shown in Supplementary Fig. 1e, the recoding sites 

often had neighboring editing sites (all located in non-repetitive regions), SNPs or un-determined 

SNVs to enable MI calculation. Thus, some recoding sites are identifiable by MI due to their 

proximity to other SNVs. Given the limited length of mRNAs (after intron removal by splicing), 



it is expected that the sensitivity using the MI calculation alone would be further improved once 

longer read length and insert size of RNA-Seq libraries become available in the near future. 

 

Supplementary Note 2 – Read mapping and variant calling methods to generate input files 

for GIREMI 

 

RNA-Seq read mapping is an important first step to generate the necessary input files for 

GIREMI (i.e., lists of single-nucleotide variants (SNVs) in the reads). For this purpose, different 

mapping methods can be adopted. For results presented in this paper, we used our previously 

published mapping strategy that facilitates accurate mapping of reads harboring SNVs2. This 

mapping method reduces errors due to existence of homologous regions in the genome and 

minimizes mapping bias for the alternative alleles of SNVs in the reads3. Importantly, we 

showed that this stringent mapping approach enables more accurate quantification of editing 

levels compared to those resulted from nominal mapping methods3.  To call SNVs from mapped 

reads, we followed the procedures described in our previous work2 and implemented a few 

quality filters that emerged in recent literature of RNA editing analysis3 (see Online Methods).  

 

GIREMI can also be applied to SNVs identified using alternative read mapping and variant 

calling methods. As an example, we used another read mapping strategy (BWA4) that is often 

applied in RNA-Seq analysis. In addition, we adopted a popular variant calling method (the 

GATK tool5) to analyze these data. The specific procedures we used were very similar to those 

described in6. As shown in Supplementary Fig. 2, we observed that the false positive rate using 

the nominal mapping strategy and GATK variant calling was somewhat higher than using our 

previous method described above, although the difference is not large. This more relaxed 

mapping and variant calling strategy led to prediction of higher numbers of editing sites.  

 

Overall, it is highly recommended that stringency in read mapping and variant calling is 

practiced for any methods that predict RNA editing sites in RNA-Seq data, including GIREMI.  

 

Supplementary Note 3 – Comparison of results from GIREMI and other methods  

 



We compared GIREMI-predicted editing sites with those resulted from two other approaches 

(Supplementary Table 2). The first is the nominal method that utilizes whole-genome sequencing 

data to distinguish RNA editing from SNPs (the "genome-aware" method). The second approach 

calls RNA editing using RNA-Seq data from multiple samples6 (the "multiple data sets" 

method). It does not necessitate genome sequence data and essentially requires a predicted 

editing site be present in multiple data sets. To conduct a fair comparison, we used the same read 

mapping and artifact-filtering procedures as used for GIREMI (Online Methods). In addition, to 

apply the "multiple data sets" method to the GM12878 data, at least one other RNA-Seq data set 

must be included. For this purpose, we used another deeply sequenced lymphoblast RNA-Seq 

data set (YH data) that also has matched genome sequencing data7. Two alternative 

implementations of the "multiple data sets" method were carried out as proposed in the original 

paper6. The first is to call GM12878 editing sites by requiring their presence in the YH data. The 

second is to pool the reads from the two samples and predict RNA editing sites using the same 

method as for individual samples. To compare with this data-pooling mode in a fair manner, we 

simply combined the results of the 2 data sets predicted by GIREMI (note these results were still 

identified from individual data set). In all analyses, either 30% or 50% of SNPs of the 

corresponding cell line was assumed to be unknown since almost all SNPs in both cell lines are 

already included in dbSNP. This procedure enables an unbiased performance evaluation 

resembling realistic cases where genome data were not available. As shown in Supplementary 

Table 2, editing sites predicted by GIREMI overlapped considerably with those from the 

genome-aware method. Results from GIREMI had higher % overlap (relative to genome-aware), 

%AG and accuracy (calculated as 1 - %SNPs among predicted editing sites) compared with the 

"multiple data sets" method, especially for editing sites in non-Alu regions. Thus, the above 

evaluations showed that GIREMI outperforms the existing genome-independent method. 

 

As another performance evaluation, we analyzed a panel of primary human brain tissue RNA-

Seq data (Supplementary Table 3) using GIREMI and the "multiple data sets" methods. These 

data sets were obtained from the GTEx database, with their IDs shown in Supplementary Tables 

5 and 6. We analyzed 3 cerebellum data sets as an example, which mimics typical individual lab-

based projects where a small number of samples were collected at modest depth. Each of the 3 

data sets was analyzed separately by GIREMI.  However, since the "multiple data sets" method 



needs more than 1 data set, we conducted three types of comparisons. First, each of the 3 data 

sets was also analyzed separately by this method. Then, editing sites for each data set were called 

by requiring their presence in at least one of the other two RNA-Seq data sets. Second, since this 

method will obviously benefit from availability of a large number of data sets for comparison, 

we also expanded the number of comparison data sets to 17 (all data sets from sub-regions of 

brain, Supplementary Table 6). Overall, it can be appreciated that GIREMI largely outperforms 

the "multiple data sets" method in sensitivity and %AG, although it only uses one data set 

whereas the latter method uses 3 or 17 data sets.  While GIREMI favors A-to-G changes by 

nature, the facts that the "multiple data sets" method yielded very low %AG in certain regions 

(e.g., non-repetitive) and sites common to both methods had much higher %AG suggest that the 

"multiple data sets" method produced limited results. In the third type of evaluation, the 3 data 

sets were pooled together (a mode of the "multiple data sets" method) to increase statistical 

power for editing prediction. To enable a fair comparison, GIREMI's results on the 3 data sets 

were combined. In addition, to be equivalent to the "multiple data sets" method, GIREMI was 

also applied to the pooled data sets. The latter method ignores the distinction of individual data 

sets and treats them as a whole. It applies to biological replicates of the same experiment, but is 

disadvantageous if comparisons of editomes across samples are desirable.  In general, the 

sensitivity of any method should increase with deeper sequencing data, which was observed for 

both methods. In this case, the inputs to GIREMI were essentially the output of the "multiple 

data sets" method since they were applied to the same pooled data set (mapped and filtered in 

exactly the same way) and both excluded public dbSNPs. Thus, GIREMI outputs a subset of the 

input, but dramatically increases the accuracy of the results (much improved %AG especially for 

non-Alu regions) (Supplementary Table 3). Since the 3 data sets used here had very low 

sequencing depth (Supplementary Table 6), statistical power was a limiting factor and data 

pooling rendered an overriding advantage. In contrast, in Supplementary Table 2, the "union of 

results" of GIREMI already outperformed the data-pooling mode of the "multiple data set" 

method, largely due to the very high sequencing depth of the GM12878 and YH data sets. 

 

In summary, GIREMI represents a substantial improvement over the existing method, given its 

higher accuracy, sensitivity and its advantageous applicability to single data set. We recommend 

applying GIREMI to individual data sets if given high sequencing depth or, even with low 



sequencing depth, if the data sets represent different types of samples to be compared against 

each other. In addition, GIREMI can be easily applied to pooled data sets or comparative 

analysis across multiple samples, to achieve higher sensitivity. For example, if multiple 

biological replicates are available and sequencing depth is modest, we recommend using 

GIREMI on pooled data sets combining the replicates.  

 

Supplementary Note 4 – GIREMI performance in different types of genomic regions  

 

We evaluated the accuracy of predicted editing sites in different types of regions: Alu, non-Alu-

repetitive, non-repetitive, synonymous, non-synonymous etc (Supplementary Tables 2 and 3), as 

it is known that existing methods have very different performance for different types of regions 

with non-Alu sites most challenging to predict6. In Supplementary Table 2, we used (1 - % 

known SNPs among predicted editing sites) to represent accuracy since the genome for 

GM12878 is known. The accuracy of GIREMI for non-Alu sites is lower than Alu sites in 

general.  For example, when assuming 30% of GM12878 genomic SNPs were unknown to 

dbSNP, we had nearly perfect accuracy for Alu sites (both coding and non-coding). For non-Alu 

repetitive and non-repetitive regions, GIREMI had an average accuracy of 85% and 75% 

respectively for non-coding editing sites, but both higher than those of the "multiple data sets" 

method.  The accuracy of GIREMI is reduced if a large fraction (e.g. 50% in Supplementary 

Table 2) of SNPs of the specific sample is unknown. However, given the rapidly expanding 

public SNP databases owing to large-scale genome sequencing efforts, it is highly likely that 

only a minor fraction of SNPs is unknown for a particular sample.  The performance of GIREMI 

in non-Alu coding regions is discussed below. 

 

Supplementary Note 5 – GIREMI performance for coding sites  

 

Current methods for editing identification suffer from low sensitivity and low accuracy for 

coding sites. On an initial analysis, the accuracy of GIREMI is also low with the average being 

28% for synonymous and non-synonymous coding sites in non-repetitive regions 

(Supplementary Table 2). Nevertheless, this level of accuracy for non-repetitive coding sites is 

better than that of the "multiple data sets" method.  



 

To further evaluate our method, we asked whether GIREMI could identify known coding sites 

with high sensitivity.  For this purpose, we used a list of high quality recoding sites reported in 

previous work (Table S1 and S2 of Pinto et al 20141). We focused on the GTEx data sets (human 

primary tissue RNA-seq, Supplementary Table 5) for this evaluation due to tissue-specificity of 

the recoding sites. As shown in Supplementary Table 4, we identified a total of 43 (91.5% 

sensitivity) out of the 47 recoding sites that had at least 5 total reads in ≥ 1 sample. Note that not 

all recoding sites in1 were testable in this analysis since they did not have adequate read coverage 

(≥ 5 as required), possibly due to the relatively low sequencing depth of the GTEx RNA-seq data 

and/or tissue-specificity of the related genes.  For each sample, the sensitivity in detecting 

recoding sites varies, with an average sensitivity of 71.4%.    

 

Since the sensitivity of GIREMI in detecting known coding sites is high, we examined whether 

applying an additional filter on non-Alu coding sites to retain only known sites could increase the 

accuracy without compromising sensitivity greatly.  For example, among the 66 coding sites in 

non-repetitive regions predicted by GIREMI in GM12878 data (Supplementary Table 2, 30% of 

SNPs assumed unknown), 12 were included in databases of known or predicted editing sites8, 9. 

Among these 12 sites, 4 were genomic SNPs. Thus, with a filter to retain only sites in editing 

databases, the accuracy of GIREMI for non-repetitive coding sites is increased to 67%.  If 50% 

of genomic SNPs were assumed unknown, this accuracy is 80%. The presence of SNPs in 

predicted sites after applying such a filter is possibly due to false positives existing in the public 

editing databases themselves. Alternatively, it suggests an interesting observation that SNPs in 

one sample could be editing sites in another. With this filter, the sensitivity is somewhat reduced. 

In the above example, 19 of the initially predicted 66 sites were not SNPs, thus likely true editing 

sites, 8 of which were retained after filtering. Overall, since the number of non-repetitive coding 

sites is relatively small and their inclusion in public databases seems to be saturating, we 

recommend directly using GIREMI results for this type of sites if a high sensitivity is desired, 

but filtering to retain for sites in editing databases to achieve higher accuracy.  

 

Supplementary Note 6 – Variation of editomes across human individuals 



 

As shown in the main text, editing sites common to many individuals were associated with 

relatively high editing levels (Supplementary Fig. 10b). These data argue against the possibility 

that these sites are randomly occurring transcriptome innovations. Rather, common editing sites 

should be associated with certain advantage such that evolution has preserved their prevalence in 

the population.  To this end, two possibilities exist with the first being that these editing sites 

themselves are adaptive changes in the RNA that render functional fitness. Alternatively, editing 

at these positions is the consequence (or by-products) of an adaptive function executed, for 

example, by the ADAR enzymes that are known to have additional roles beyond RNA editing10. 

The level of sequence conservation of regions immediately flanking common editing sites may 

provide a clue to distinguish the two hypotheses. Higher conservation in such regions is more 

likely associated with functional significance of the editing sites themselves. In contrast, if 

ADAR's non-editing function is adaptive and evolutionarily preserved, sequence conservation of 

the immediate neighborhood of the editing sites themselves may not be high, given the 

predominant specificity of ADAR enzymes to dsRNA structures instead of RNA sequences. 

Indeed, the conservation profile of common editing sites is similar to that of non-TSE sites and 

lower than that of TSEs (Fig. 2b vs. 2d). Thus, it is highly likely that common editing sites in 

general are not enriched with functional editing sites, although it is important to note that a 

subset of functional sites, such as the TSEs, does exist. Overall, our data support the hypothesis 

that many common RNA editing sites are likely by-products of the RNA editing machinery 

carrying out functions to mediate other aspects of gene expression. Evolutionary selection to 

preserve the other regulatory functions led to an apparent preservation of the RNA editing sites 

across the population.
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