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(b) Method Phase I - Prediction from microscopy using model
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Supplementary Figure 1 Method overview. The fusion process consists of two phases. (a) Phase | builds a cross-modality
model from the two measurement sources and evaluates for which ions good prediction is possible. (b) For those ions, phase Il
uses the model and the high-resolution microscopy measurements to predict the ion distribution at higher-than-IMS resolutions.



Phase I: Model Building and Evaluation
Modality 1: microscopy Modality 2: imaging MS
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Task: Find out which patterns are cross-modality supported by this model.
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Supplementary Figure 2 Extensive step-by-step details of the fusion process. In the two-phase fusion method, phase | focuses on building and evaluating a cross-modality
model between the provided modalities. It entails a transformation of the microscopy variables (step 1a) and the IMS variables (step 1b), a spatial mapping of both
measurement sets (step 2), building the model (step 3), and evaluating model performance both chemically and spatially (step 4). Phase Il employs the cross-modality model
in a predictive application, and entails a prediction for all IMS variables (step 5) followed by a pruning of IMS variables for which predictive performance is insufficient (step 6).
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Supplementary Figure 3 Method phases and steps with algebraic details. Algebraic details on the structure and size of the input and output data of each method step

throughout the fusion procedure. Pims = number of pixels in the IMS data source; Uims = number of native variables per pixel provided by the IMS data source; Nins = number

of variables per pixel provided by the IMS data source after transformation; Pmicro = Nnumber of pixels in the microscopy data source; Umicro = Nnumber of native variables per

pixel provided by the microscopy data source; Nmicro = Nnumber of variables per pixel provided by the microscopy data source after transformation; and M = number of

mapped IMS and microscopy signatures.
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Supplementary Figure 4 Prediction of the ion distribution of m/z 762.5 in mouse brain at 10 ym resolution from 100 pm IMS and 10 pm microscopy measurements
(sharpening). This example in mouse brain fuses a measured ion image for m/z 762.5 (identified as lipid PE(16:0/22:6)) at 100 pm spatial resolution (a) with a measured
H&E-stained microscopy image at 10 um resolution (b), predicting the ion distribution of m/z 762.5 at 10 ym resolution (reconstr. score 82%) (c). For comparison, (d) shows
a measured ion image for m/z 762.5 at 10 ym spatial resolution, acquired from a neighboring tissue section. Additionally, (e) shows a 10 uym version of the m/z 762.5 ion

image obtained through interpolation, a computational up-sampling method that does not employ information from another modality to guide its estimates.



