Atomic accuracy models from 4.5 Å cryo-electron microscopy data with density-guided local rebuilding

Frank DiMaio^{1,†}, Yifan Song^{1,2,†}, Xueming Li^{3,8}, Matthias J. Brunner^{4,5,6,7}, Chunfu Xu⁸, Vincent Conticello⁸, Edward Egelman⁹, Thomas Marlovits^{4,5,6,7}, Yifan Cheng³, David Baker^{1,10,*}

†These authors contributed equally to this manuscript

¹ Department of Biochemistry, University of Washington, Seattle, WA, USA

² Cyrus Biotechnology, Inc., Seattle, WA, USA

³ Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.

⁴ Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany

⁵ Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

⁶ Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria

⁷ Research Institute of Molecular Pathology (IMP), Vienna, Austria

⁸ Department of Chemistry, Emory University, Atlanta, GA 30322

⁹ Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA

¹⁰ Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA

^{*}To whom correspondence should be addressed. E-mail: dabaker@u.washington.edu

[&]amp;Current address: School of life science, Tsinghua University, Beijing, P.R. China, 100084

Supplementary Information

Supplementary Table 1. A comparison to previously published methods. For a series of comparative models of 20S, our refinement was compared to two previously developed methods combining Rosetta refinement with experimental density data, comparing the fraction of $C\alpha$ atoms within 1 Å using the same starting models. $DiMaio~2009^1$ as well as $RosettaCM^2$ augmented with fit-to-density-energy are both outperformed by the IterativeBuild method reported here. Results are reported for 20S maps at 3.3 and 4.4Å resolution.

	20S proteosome (3.3Å)			<i>20S</i> proteosome (4.4Å)		
-	DiMaio	Rosetta	Iterative	DiMaio	Rosetta	Iterative
	2009	CM	Build	2009	CM	Build
1yar	0.90	0.96	0.94	0.93	0.94	0.88
3h4p	0.86	0.85	0.93	0.75	0.79	0.81
1iru	0.86	0.90	0.92	0.83	0.83	0.88
3unf	0.77	0.83	0.87	0.67	0.70	0.78
3nzj	0.85	0.86	0.92	0.83	0.78	0.81
1ryp	0.79	0.87	0.92	0.80	0.80	0.87
1q5q	0.61	0.78	0.94	0.61	0.58	0.68
1g0u	0.58	0.62	0.78	0.49	0.50	0.76
4hnz	0.29	0.69	0.79	0.46	0.61	0.68
2x3b	0.42	0.58	0.75	0.41	0.48	0.61
1g3k	0.42	0.63	0.73	0.42	0.45	0.58
1m4y	0.37	0.66	0.78	0.37	0.55	0.72
Average	0.64	0.77	0.86	0.63	0.67	0.76

Supplementary References

- DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using rosetta. *Journal of molecular biology* **392**, 181-190 (2009).
- Song, Y. *et al.* High-Resolution Comparative Modeling with RosettaCM. *Structure* **21**, 1735-1742 (2013).