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Supplementary Figure 1: Optical Microscopy. a, Longitudinal cut of a Peripatus

solorzanoi. Dotted arrow mark the length L = 13.0± 0.2 mm, of the widest part of an

almost depleted reservoir, Re, (dark cylindrical area). Its diameter D = 3.7± 0.2 mm.

The reservoir becomes narrow and ends in the oral papilla (circled region). b, Zoom in of

the oral papilla, circled region in Supplementary Fig.1a. We note that these dimensions

are smaller than in the alive specimen as specimens contract when stored in formalin.

Indeed, just after dissection the reservoir length was L = 30± 1 mm. c, Solidified slime

obtained from a different specimen. In this case D = 1.9 mm in the wider part. This 3D

template clearly shows the difference between the narrow canal (leftmost region) and the

center of the reservoir. d, Long reservoir showing muscular structure similar to the one

reported by Baer et al.1.

1



a b

c d

e f
g h

Supplementary Figure 2: Worm attack and sizes. a, Peripatus solorzanoi of sizes

∼ 18 cm, and b of size ∼ 17 cm are shown. c-f , Snapshots of a 480 fps (frames per second)

video are shown (The attack was complete in tsquirt ∼ 60 ms). To stimulate the attack we

used a soft paintbrush, and light. g,h, side view of the attack taken with a 30 fps camera.

Using information from both cameras we obtained data for Fig.1-f (Main text).
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Supplementary Figure 3: Syringe model diagram. The big cylinder (solid line), of

radius Rre represents the reservoir before contraction. After contraction the reservoir walls

contract to a radius Rre−∆Rre. The small channel represents the canal through which the

slime transits until reaching the oral papilla. The ability of the worm to squirt to very high

speeds V ∼ 5 m s-1 strongly depends on the ratio between reservoir and canal radius.
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Supplementary Figure 4: Fiber and beads. Solidified jet (fiber) with typical

structure shown across all specimens; a central fiber decorated by beads. These beads on a

string effect is the consequence of the interplay between capillary, elastic, viscous, and

inertial forces2. The beads on a string formation dynamics is cutoff by the drying process.
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Supplementary Figure 5: Template for micro-pipe production. a, The acrylic

template used to shape the micro-pipes. Channel width 1.6 mm, and depth 2 mm. b,

Scotch tape centering technique used for holding the needles. Needle diameter 0.51 mm. c,

Channels filled with PDMS and with and without needles. Needle diameter 0.81 mm. d

After peeling off the channels and mounting the micro-pipe in a rigid rounded needle to

form a cantilever. Needle diameter 0.51 mm, channel diameter 300 µm.
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Supplementary Figure 6: Free oscillations of the artificial papilla. a After a

slight perturbation, we recorded the damped oscillations of the cantilever. Imaging was

done at 8000 fps. Experimental data (Green dots) were fitted to a damped dynamics

A = Amaxe
−νt cos (Ωt+ δ) obtaining Ω = 79.78 s-1, δ = −1.04, ν = 5.35 s-1. The red line is

the best fit result were a small vertical offset was introduced for clarity.
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Supplementary Figure 7: Synthetic papillae model. A soft tube made out of

Polydimethylsiloxane (PDMS) of Young’s modulus, E. Its dimensions are d (inner

diameter), h (tube height), w (tube width), L (papilla length), and V (liquid speed). In

the experiment shown in Supplementary Movie 4, L = 9.8 mm, w = 1.6 mm, h = 1.42 mm,

u0 = 1.4 m s-1, τ0 = 0.014 s.
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Supplementary Figure 8: Spatio-temporal numerical evolution. Numerical

simulation result for artificial papilla motion. Results shown were obtained using

Garlekin’s method Eq. 3 (Main Text). Parameters used are β = 0.24, umax = 6.7,

τmax = 3.0. The χ-axis corresponds to the dimensionless coordinate along the papilla and

the τ -axis corresponds to the dimensionless time of the system. The vertical axis

corresponds to the dimensionless deformation amplitude η (See Methods).
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Supplementary Figure 9: Critical velocity in accordion shaped micro tubes.

The critical velocity for pipe oscillations decreases when there are weak points. We show

the rough micro tube before extracting the needle for clarity. The inner diameter is

d = 0.81 mm. The horizontal axis corresponds to the square root of the ratio between the

moment of inertia I, and the smallest local moment of the inertia for pipes used in this

experiment Imin. The vertical axis is the ratio between the critical speed for a sample Vc,

and the smallest critical speed Vmin
c among all samples. The solid black line is the best

linear fit consistent with our scaling arguments.
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Specimen fps Active Phase ∆t [s]

Red 1 240 18 0.075

Red 1 240 13 0.054

Red2 (Left papilla) 480 30 0.063

Red2 (Right papilla) 480 37 0.077

White 1 480 25 0.052

Supplementary Table I: Squirt times obtained by using high speed video. Data from

three giant specimens was obtained. Two red and one white. For specimen Red 2 we

specify the papilla position as the liquid jet is not squirted at the same time in both

papilla. The active phase column shows the number of fps where slime is actively being

ejected from the papilla.
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δ[10−4m] F [10−5N] E[kPa]

7.5 17 41.7

10 22 40.5

Supplementary Table II: Force-deflection data used to compute Young’s modulus (Each

measurement δ was repeated three times). One papilla was used from the red Peripatus

solorzanoi . Papilla deflection δ was measured as function of the magnetic force F . This

allowed us to find3 the Young’s modulus E.

Supplementary Note 1: Optical Microscopy.

We have used optical microscopy to obtain the geometry of the reservoir and papilla

system, as well as to analyze the tissue structure at papilla and reservoir level.

In Supplementary Fig.1 a− b, a longitudinal cut at middle reservoir level clearly shows

that the specimen anatomy has a large reservoir (Re) that ends in a narrow canal (black

arrow). That narrow canal leads to the opening of the oral papilla (See Fig. 1 main

text). This geometry is in contrast to previously reported anatomical studies4 where no

mention to the sudden cross section change has been reported. The inner dimensions and

3-D structure of the reservoirs were directly confirmed as a solidified template of it was

found during dissection, Supplementary Fig.1 c. The Onychophora slime was found in a

solid state confirming the dimensions obtained by microscopy. The ratio between D and d is

∼ 20. This provides a simple, syringe-like mechanism that permits high squirting velocities

at oral papilla level.

Supplementary Note 2: Average squirt times.

In Supplementary Fig.2 examples of Onychophora and the attack process are shown.

Analyzing videos of the squirting process for several specimens we counted the number

of frames (fps: frames per second) at which the liquid jet was being expelled from the

oral papilla. Our results are summarized in Table I. From this data we get an average of

∆tave = 0.064± 0.005 s. As described in Table II, and consistent with field observations we
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have seen that right and left oral papillae may squirt at slightly different times, leaving the

full body contraction hypothesis on weak grounds.

Supplementary Note 3: Slow muscular contraction for fast squirt.

As reported in Supplementary Note 1, the squirting mechanism is composed of a large

reservoir that has strong muscle fibers in a configuration that makes the wall a contractile

object1. This reservoir is connected to a narrow duct through which the slime is expelled.

Based on this information the basic model of the squirting system is much alike a simple sy-

ringe (See Supplementary Fig.3). The slime is stored in a large cylinder (reservoir) of radius

Rre and length Lre that radially contracts and pushes its content all the way through the

narrow canal until it reaches the external opening located at the oral papilla (Supplemen-

tary Fig.1 a-b and Supplementary Fig. 3). As shown in Supplementary Fig. 3 (Geometry

supported from our own observations and studied by Baer et al.) the whole mechanism is

composed by the reservoir that contracts radially, and glands that produce the slime which

transits to the reservoir. For the specimens used, the reservoir length Lre ∼ 3 · 10−2 m,

and its radius has a typical value Rre∼ 2 · 10−3 m. According to our measurements of the

dry fiber and the organ opening (See Supplementary Figs. 1,4), the average fiber diameter

is d ∼ 150 µm. Using a high speed camera (240-480 fps) we have also measured the fiber

propagation speed which is not constant but of order V ∼ 3− 5 m s−1.

Using the above mentioned information we can ask how large the reservoir radial contrac-

tion should be in order to produce such a fast liquid squirting. This speed allows this slow

moving worm to capture fast moving preys such as fireflies, and crickets between others. A

cricket has a typical scape speed5 of order 2 m s−1 .

We proceed to provide simple formulae that relate the vesicle geometry and jet dynamics

considering an open geometry. The vesicle volume before and after contraction are voli =

πR2
reLre and volf = π (Rre −∆Rre)

2 Lre, where ∆Rre is the change in the reservoir radius

due to muscular contraction. Considering that ∆Rre/Rre � 1 the volume of liquid expelled

is voli − volf ≈ 2πRre∆RreLre and that volume should be equal to the one of the squirted

slime. In our experiments fiber length C ∼ 60 ∼ 10−2 m, and its mean radius r ∼ 75µm.

(Supplementary Fig. 4). Volume conservation forces that 2πRre∆RreLre = πr2C ∼ 10µL
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from where the radial contraction can be computed as

∆Rre =
r2C

2RreLre
(S1)

∆Rre =
(75 · 10−6)

2
60 · 10−2

2 · 2.0 · 10−3 · 3 · 10−2
≈ 30 · 10−6m (S2)

This is the radial contraction of the reservoir. This means that the circular muscles must

contract ∆Rre

Rre
∼ 0.03 in order to produce the needed change in volume. This contraction is

well within biological capability6–8.

The previous estimate is a consequence of overall volume conservation. However, the

liquid slime is at a good approximation incompressible. Therefore, flow conservation holds.

Balancing injected flow from the vesicle and squirting flow from the papilla we obtain:

Vout =
2Rre∆RreLre

r2τ
(S3)

using Eq. S1 we find that an estimate for the squirting time is given by:

τ =
C

Vout

(S4)

where τ is the typical time scale in which the liquid is actively expelled. Given that Vout

has been measured from high speed movies (Supplementary Movies 1- 2) together with a

standard videocamera for triangulation (Supplementary Movie 3), and ∆Rre was obtained

from volume conservation (Eq. S1) we can extract the typical time scale for the vesicle

contraction that allows the fast squirt .

τ =
60 · 10−2

5
= 0.12 s (S5)

which is well within the reach of the muscles found in Onychophora, and consistent with

experimental observations (Supplementary Movies 1 and 2). The radial contraction speed

is quite slow ∆Rre/τ ∼ 3 · 10−4 m s−1.

Supplementary Note 4: Elastic properties measurements.

We determine the bending stiffness of the artificial papilla B = EI, and from that

determine the Young’s modulus, E, of the PDMS produced. We used a dynamical way to
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measure B. Free oscillation frequency, Ω, of a PDMS cantilever was measured recording at

8000 fps. Considering only the first eigenvalue λ0 for the cantilever problem, we can find B

using

Ω =

(
λ0

L

)2√
B

µ
(S6)

where µ is the linear mass density, and L is the beam length. From the beam geometry we

know that the moment of inertia is I = wh3/12. We use this information and its relation

with B to compute E of the PDMS sample. Experimental damped oscillations, and the

best fit to A(t) = Amax cos(Ωt+ δ) exp(−νt) are shown in Supplementary Fig. 6 from where

E = 288 kPa, and ν = 5.35 s−1 is a damping factor.

In order to determine Papilla Young’s Modulus (after dissection), we attached a small

steel bearing ball (1mm in diameter) to the tip of an oral papilla, and used a magnet

that was perpendicular to the sample to pull it. Thus, we deformed an oral papilla using

magnetic forcing3 in a free end cantilever configuration. In this case F = 3δEIL−3, where

F is the magnetic force, and L = 3.0 mm, the papilla length. We obtained E ∼ 40 kPa

(Supplementary Table II). This large value could be due to post-mortem rigidity combined

with dry slime at the inner part of the tube.

Supplementary Note 5: Estimates of physical parameters.

The parameters that naturally emerge when obtaining the dimensionless Eq. 4 are: β,

and γ corresponding to the ratio between the masses of liquid versus the total mass of the

system, and the ratio between elastic forces and weight, respectively. Furthermore, typical

speed u0 and time τ0 scales are needed to describe the dynamics of the system. We determine

the values of these quantities to define the relevant parameter space in our experiments.

The mass parameter for a tube of circular cross section is:

β =
(

M

m+M

)
=

1

1 +
(
D
d

)2 (S7)

where d ∈ {0.15, 0.5} mm, and D ∈ {0.3, 1.0} mm giving β ∼ 0.25 for the Onychophora

specimens used in our experiments.
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The characteristic velocity parameter is defined by:

u0 =
(
EI

M

)1/2 1

L
(S8)

for d = 0.5 mm, D = 1.0 mm, and E = 40 kPa resulting into u0 ≈ 0.51 m s−1. We

have measured jet speeds V ∈ [3.2, 5.0] m s−1. Therefore, the dimensionless parameter

u ∈ [6.3, 9.8].

τ0 =
(
m+M

EI

)1/2

L2 (S9)

for d = 0.5 mm, L = 6.0 mm, and m + M = (ρD2/4) Kg m−1. Thus, the elastic time scale

is τ0 ≈ 0.023 s. The typical squirt time is ∆tave = 0.064 s, from where the dimensionless

squirt time is τmax = ∆tave/τ0 ∼ 3.0.

The parameter characterizing the influence of gravity in this system is

γ =
(M +m)g

EI
L3 (S10)

In our experiments, γ ∈ [0.2, 0.8], showing that the role of gravity is negligible compared

with the centrifugal term ∼ u2.

For the case of synthetic papilla we have chosen a rectangular cross section in order make

visualization easier. In this case

β =
(

M

m+M

)
=
πD2

4wh
(S11)

in the experiment shown in Fig.3 (main text), Vmax = 9.4 m s−1, h = 1.4 mm, w = 1.6 mm,

and E = 288 kPa. Resulting in physical parameters β = 0.24, u0 = 1.40 m s−1, τ0 = 0.014 s,

and γ = 0.21. Dimensionless squirt time is τmax = tmax/τ0 ∼ 3, and umax = 9.4/1.40 = 6.7

comparable to the one found for the real specimen.

Using these parameters obtained from our experimental data we obtained a spatio-

temporal plot shown in Supplementary Fig.8.

To further characterize the natural and artificial systems we introduce an elasto-fluidic

Reynolds number as:

ReEF =
ρu0d

µ
(S12)
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where ρ, and µ are the liquid density and the dynamical viscosity respectively. The dynami-

cal viscosity of the Onychophora slime is unknown up to date. However, it should not be far

from the value for water as before to enter in contact with air it is composed of 90 percent of

water, and the remnant 10 percent is made out of proteins, sugars, lipids and nonylphenol9.

Thus, our estimates for the natural system is:

ReEF =
103kg m−3 · 0.51m s−1 · 0.5 · 10−3m

8.9 · 10−4Pa s
∼ 290 (S13)

and for the artificial one

ReEF =
103kg m−3 · 1.40m s−1 · 0.81 · 10−3m

8.9 · 10−4Pa s
∼ 1250 (S14)

Supplementary Note 6: The effect of an accordion like external structure.

In order to analyze the effect of local changes in the bending stiffness EI we built micro

tubes with rectangular cross section, but with variable width, w (Supplementary Fig. 7).

The thickness was constant h = 2.2 mm. The modulation was a sinusoidal pattern where

the maximum always reached the same point. That is, the maximum width of all samples

was constant (w = 2.0 mm ), but the local width of the pipe wall varied as shown in

Supplementary Fig. 9.

In order to find Vc for these samples we repeated the procedure shown and described in

Fig. 3 (Main text). The only difference is that images were acquired at 3200 fps for better

image resolution.

The control parameter in Supplementary Fig. 9 is the ratio (I/Imin)1/2, where Imin is the

smallest local moment of the inertia for pipes used in this experiment (See top left image

Supplementary Fig. 9). We used this dimensionless parameter as we know that the typical

speed in this system is:

u0 =
(
EI

M

)1/2 1

L
(S15)

Therefore, when keeping M , E, and L constant, Vc ∼ I1/2. Therefore, Vc/Vmin ∼

(Ic/Imin)1/2. We have used as reference Vmin = 4.7 m s−1 corresponding to the lowest

critical speed measured in the micro pipe with the largest amplitude of the modulation (See

leftmost inset Supplementary Fig. 9). Our data shows the onset of the instability occurs at

lower fluid speeds when weak points are present in the micro pipes.
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