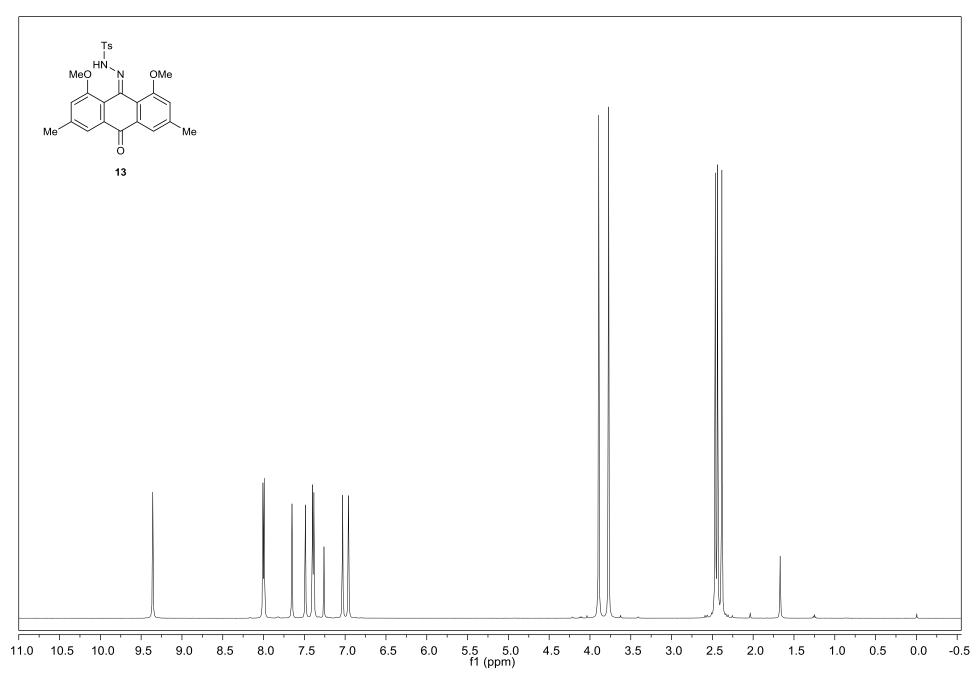
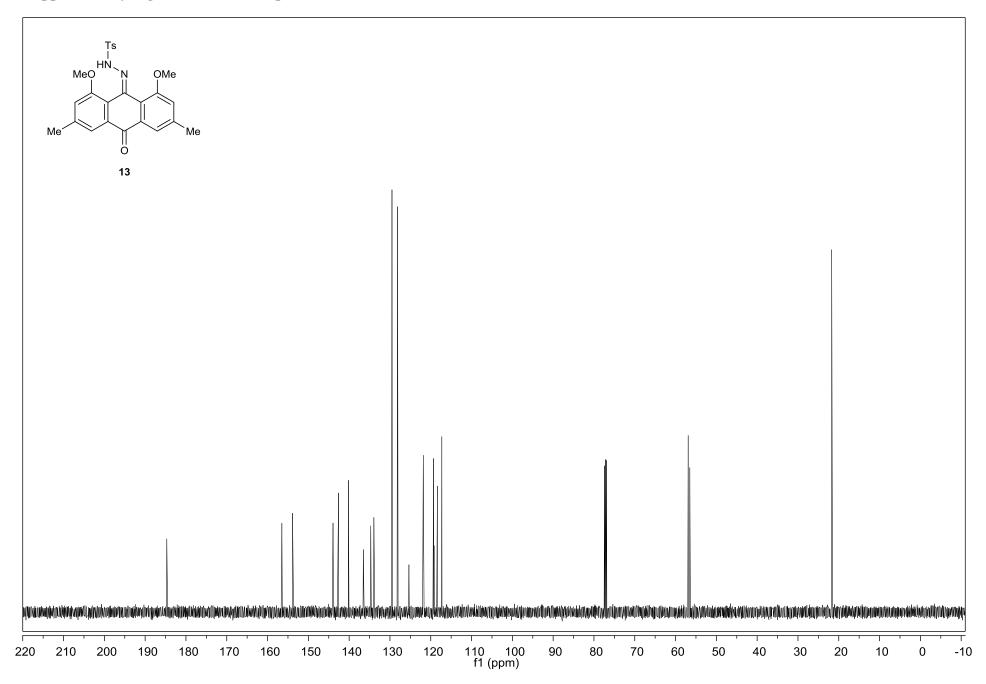
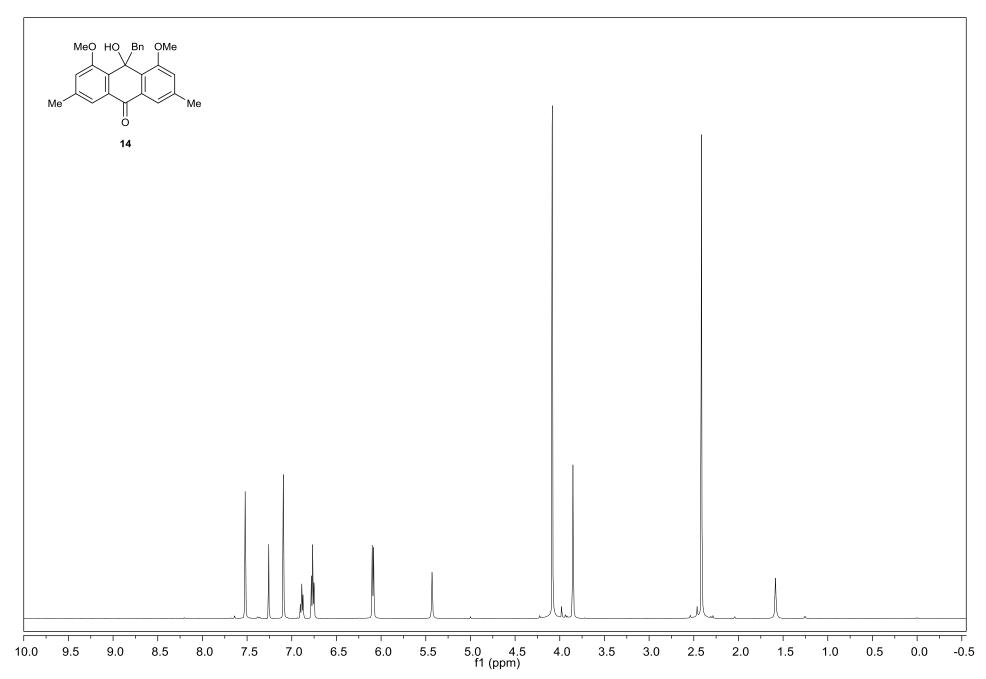
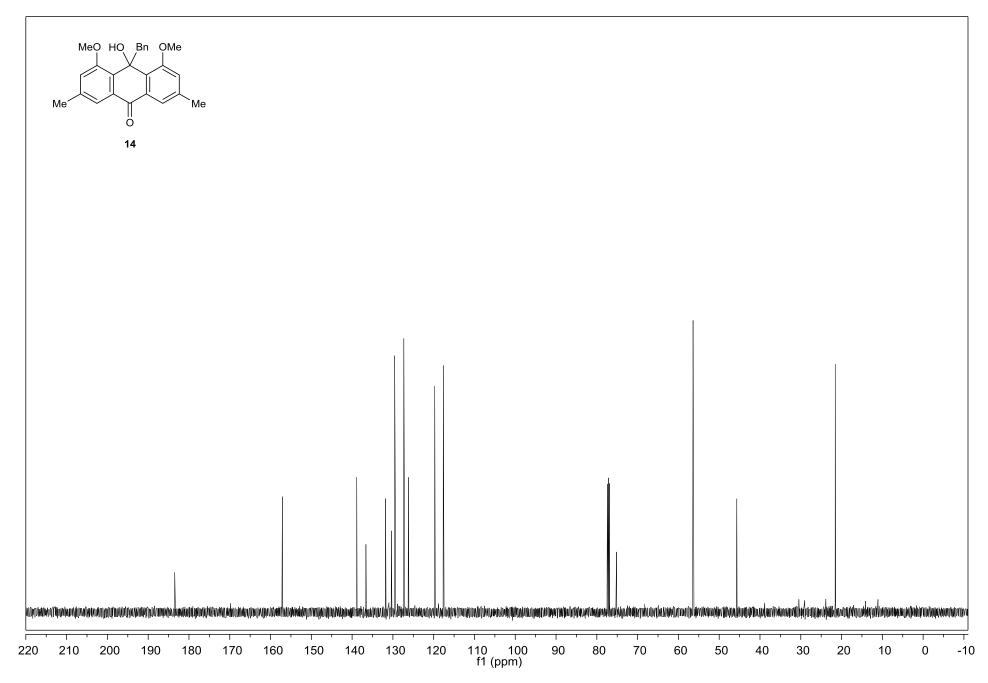
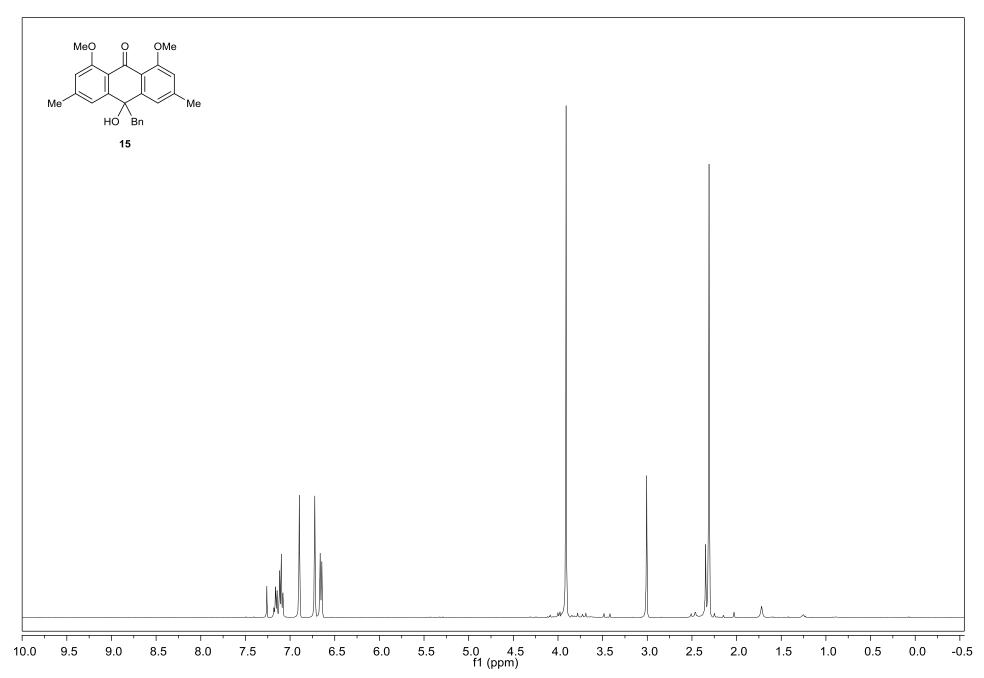

Supplementary Figure 1. ¹H NMR Spectrum of 11 (500 MHz, CDCl₃)

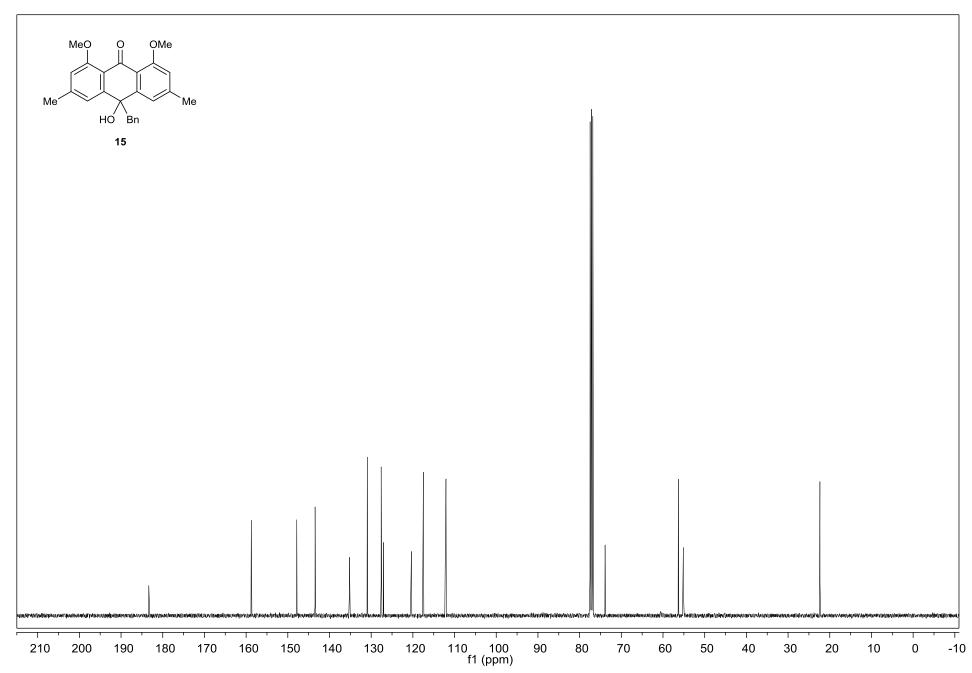

Supplementary Figure 2. ¹³C NMR Spectrum of 11 (126 MHz, CDCl₃)


Supplementary Figure 3. ¹H NMR Spectrum of 3 (500 MHz, CDCl₃)

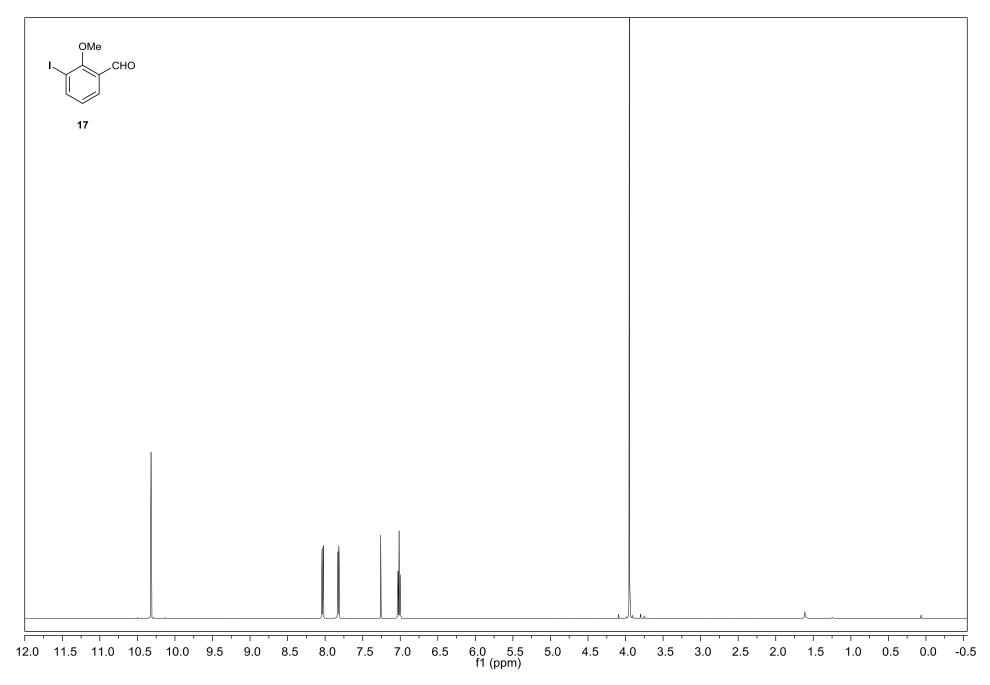

Supplementary Figure 4. ¹³C NMR Spectrum of 3 (126 MHz, CDCl₃)


Supplementary Figure 5. ¹H NMR Spectrum of 13 (400 MHz, CDCl₃)

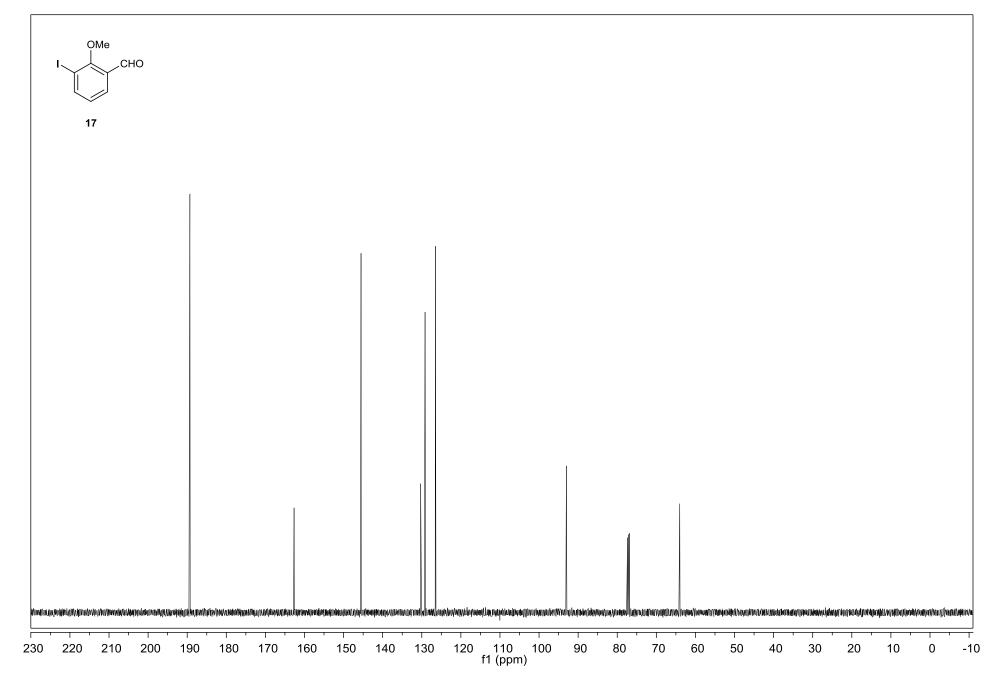

Supplementary Figure 6. ¹³C NMR Spectrum of 13 (126 MHz, CDCl₃)


Supplementary Figure 7. ¹H NMR Spectrum of 14 (400 MHz, CDCl₃)

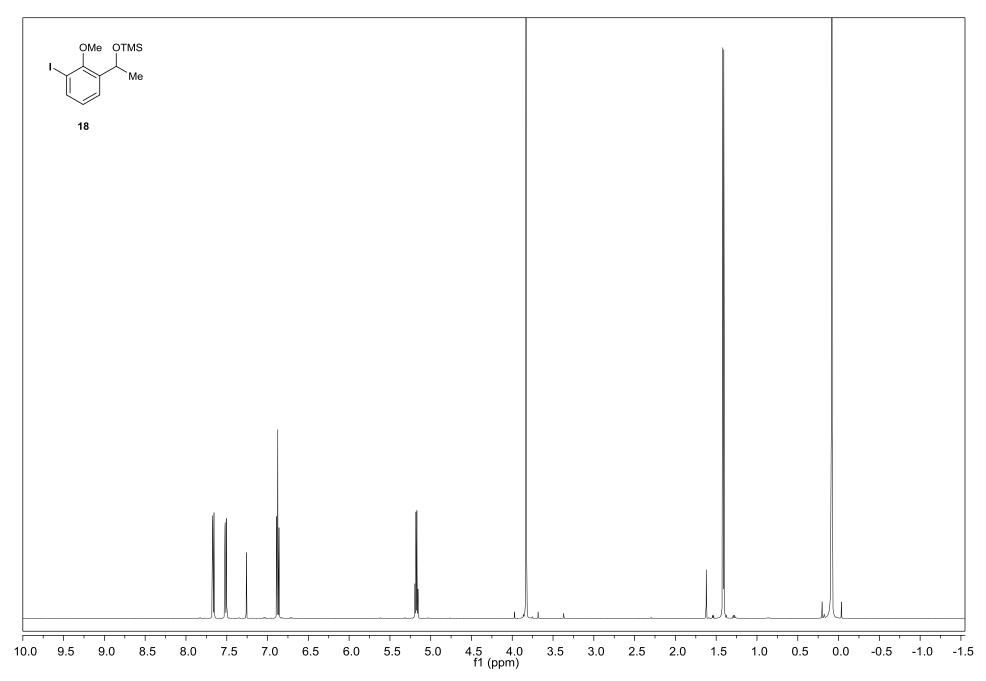
Supplementary Figure 8. ¹³C NMR Spectrum of 14 (126 MHz, CDCl₃)

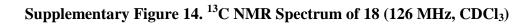


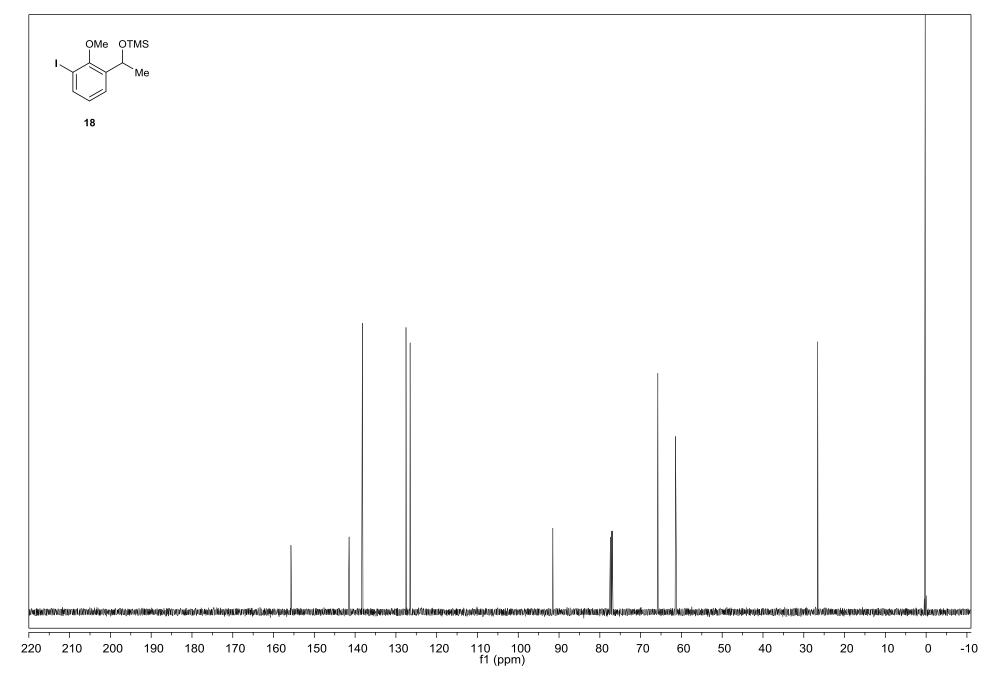
Supplementary Figure 9. ¹H NMR Spectrum of 15 (400 MHz, CDCl₃)

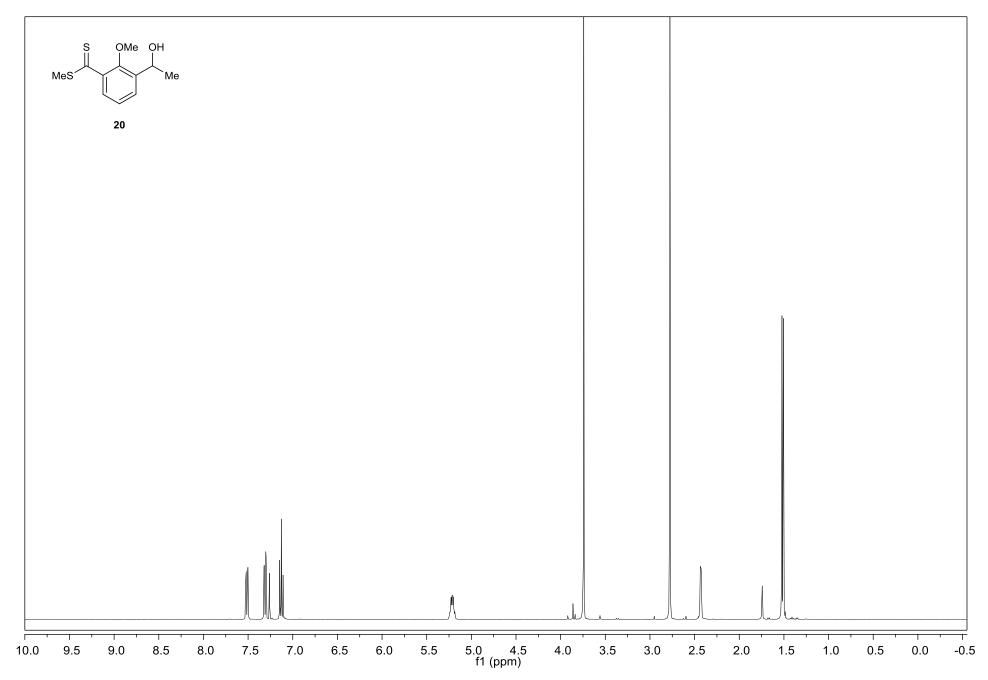


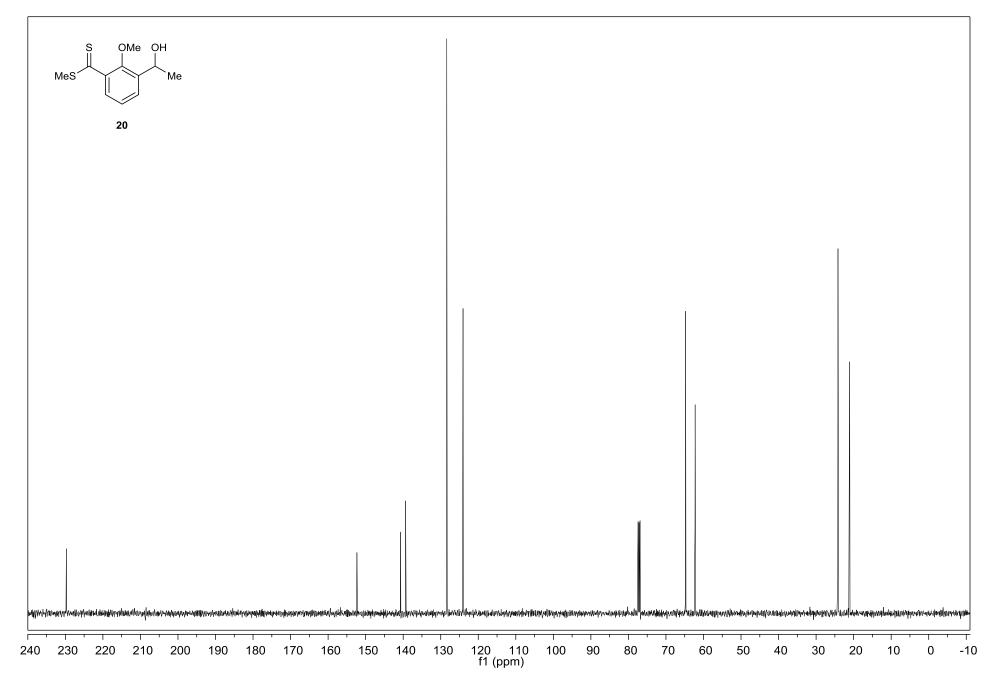
Supplementary Figure 10. ¹³C NMR Spectrum of 15 (101 MHz, CDCl₃)

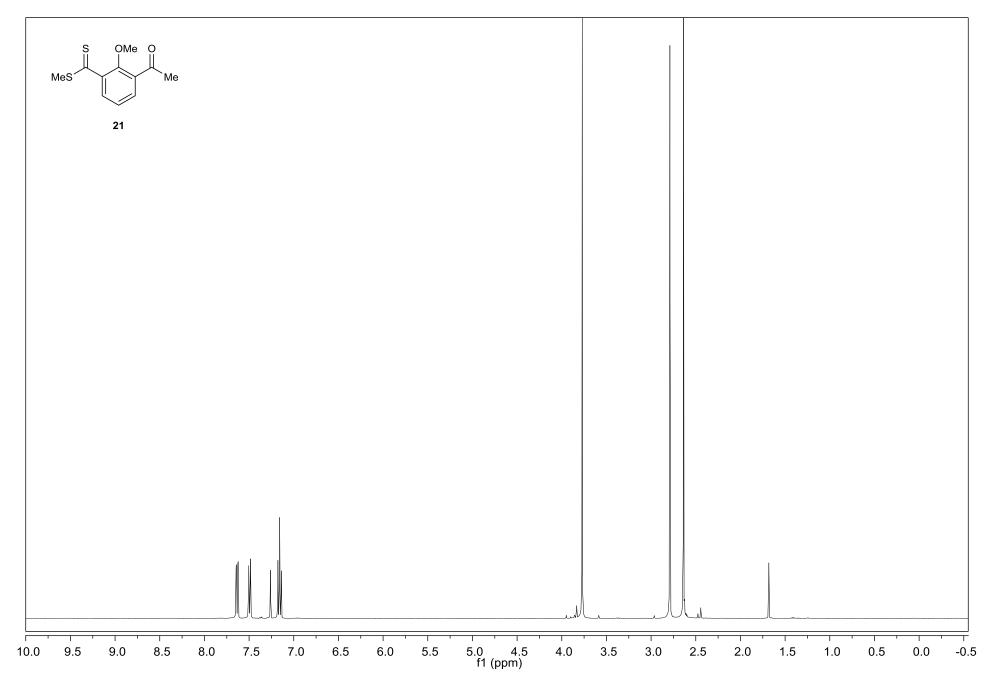

Supplementary Figure 11. ¹H NMR Spectrum of 17 (500 MHz, CDCl₃)

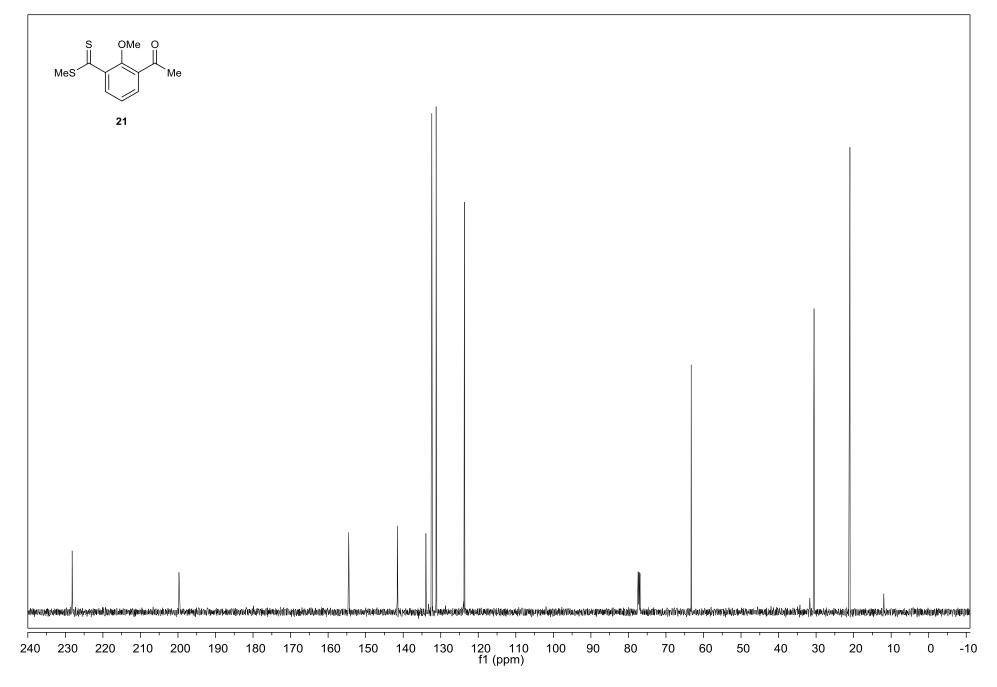


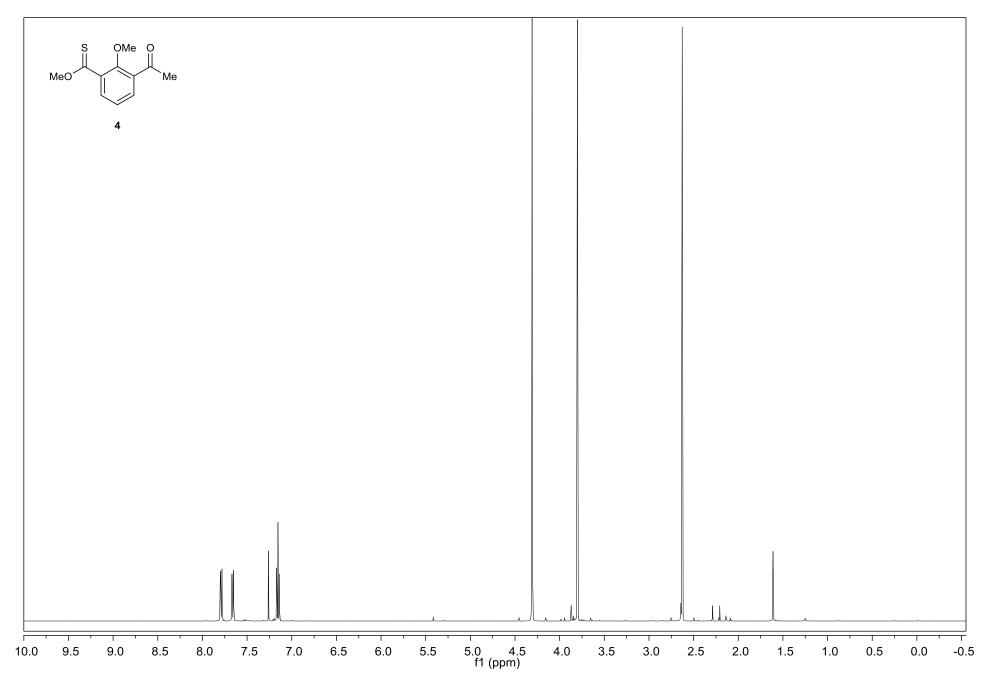


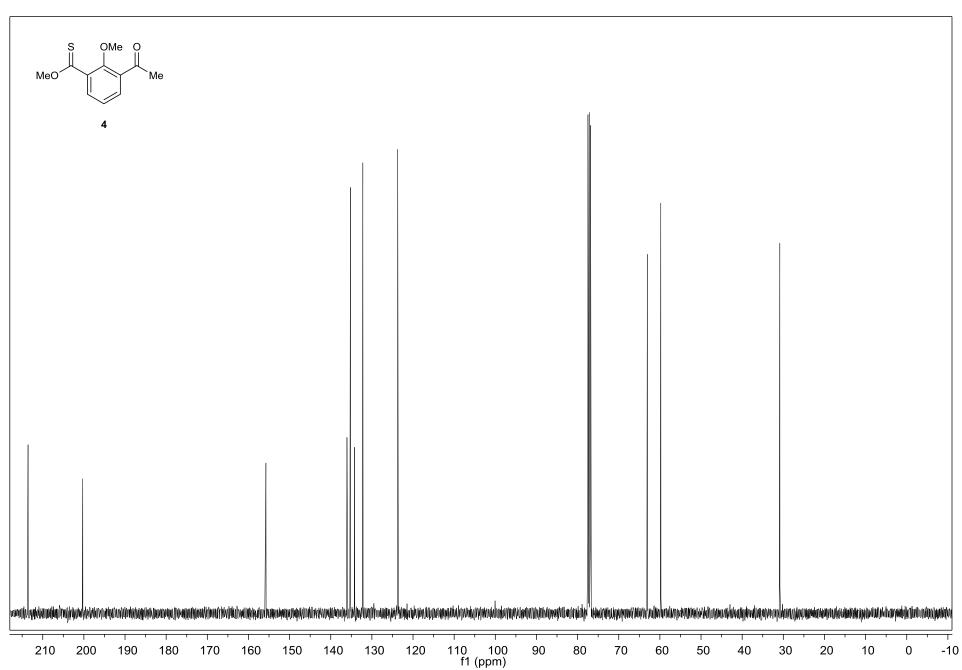

Supplementary Figure 13. ¹H NMR Spectrum of 18 (500 MHz, CDCl₃)

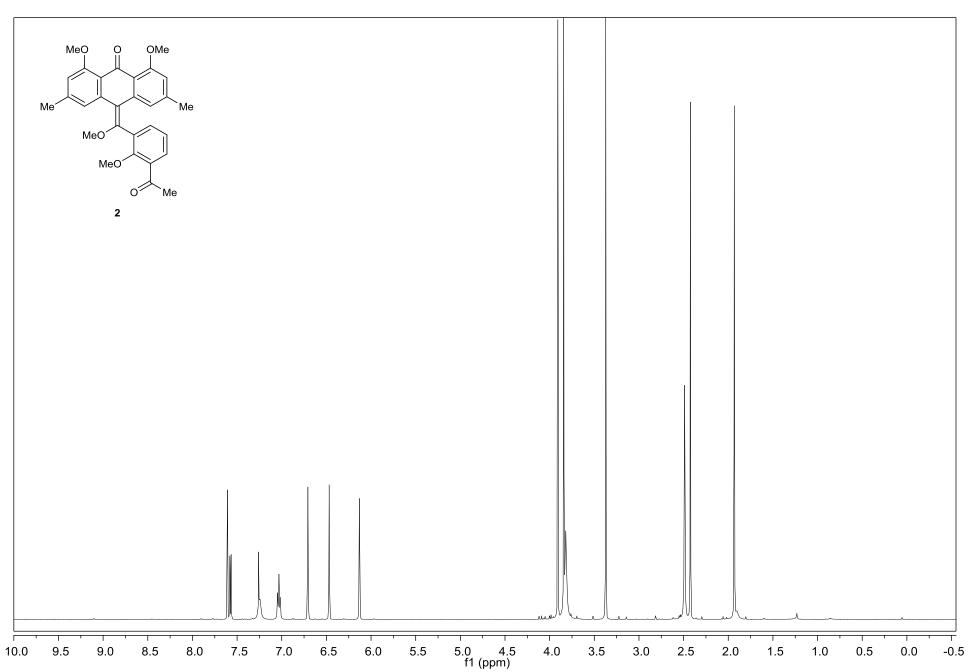



Supplementary Figure 15. ¹H NMR Spectrum of 20 (400 MHz, CDCl₃)

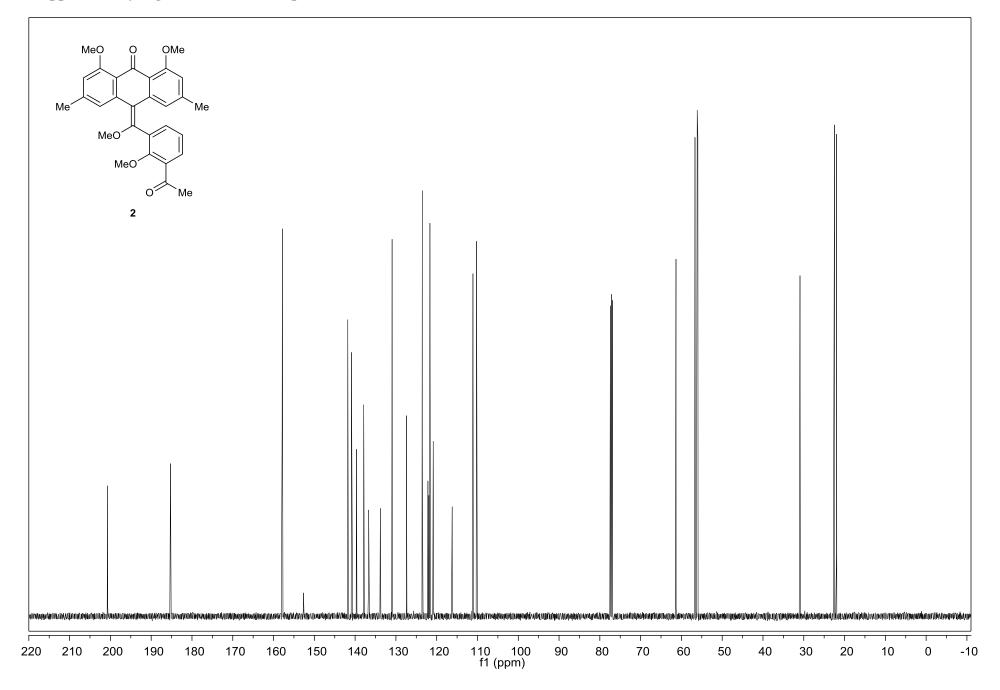

Supplementary Figure 16. ¹³C NMR Spectrum of 20 (126 MHz, CDCl₃)

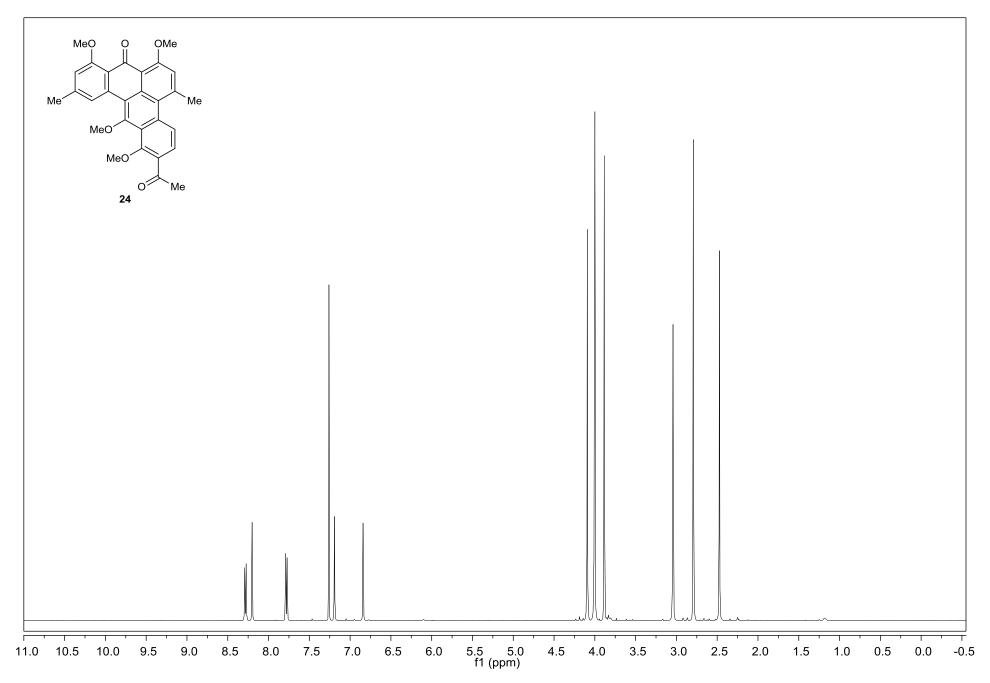

Supplementary Figure 17. ¹H NMR Spectrum of 21 (400 MHz, CDCl₃)

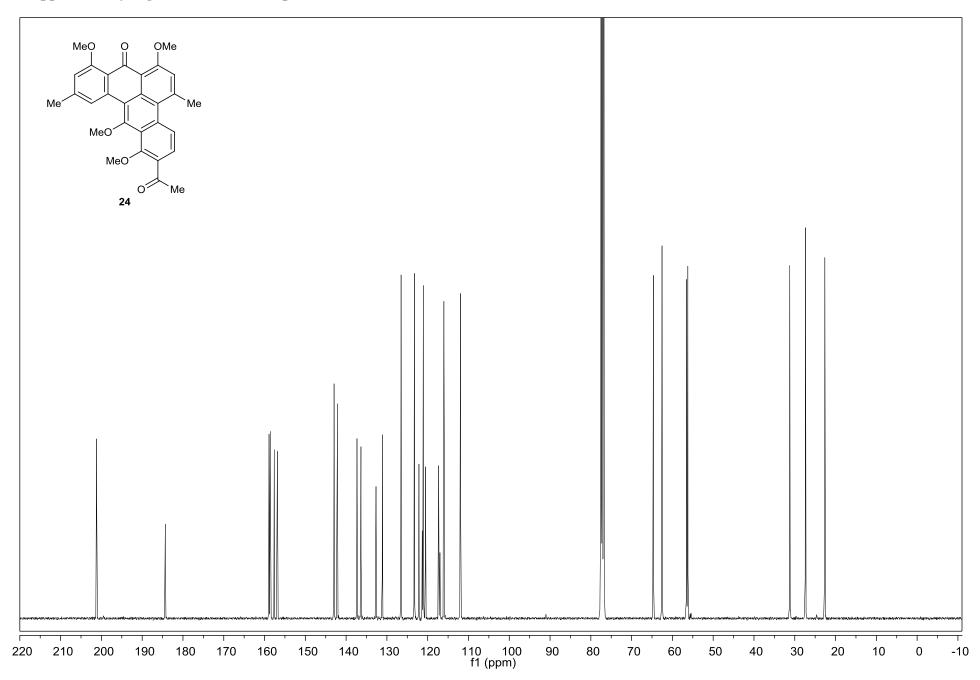


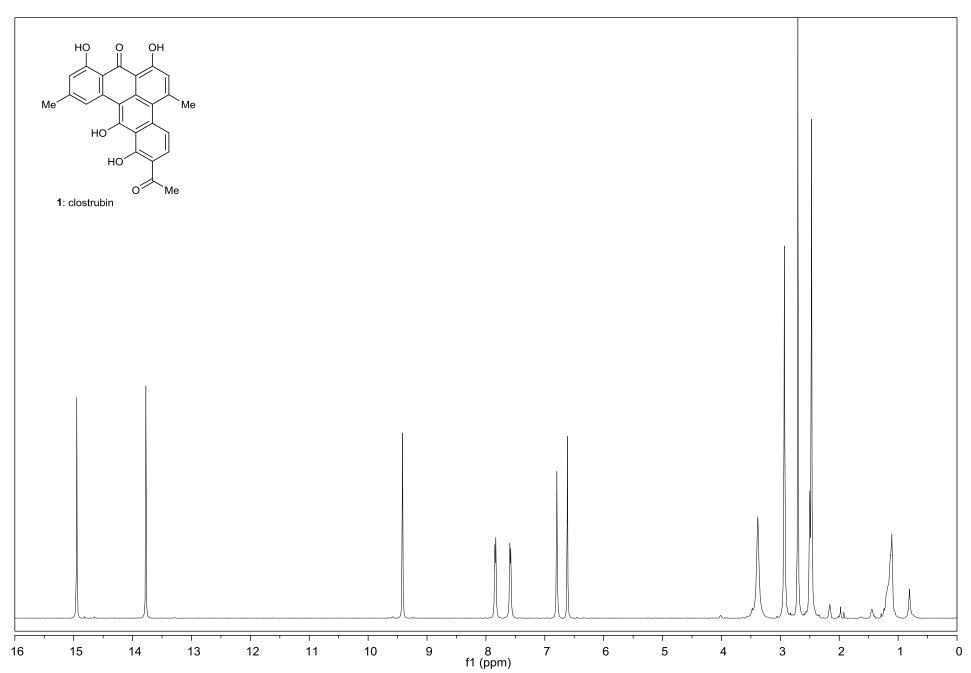


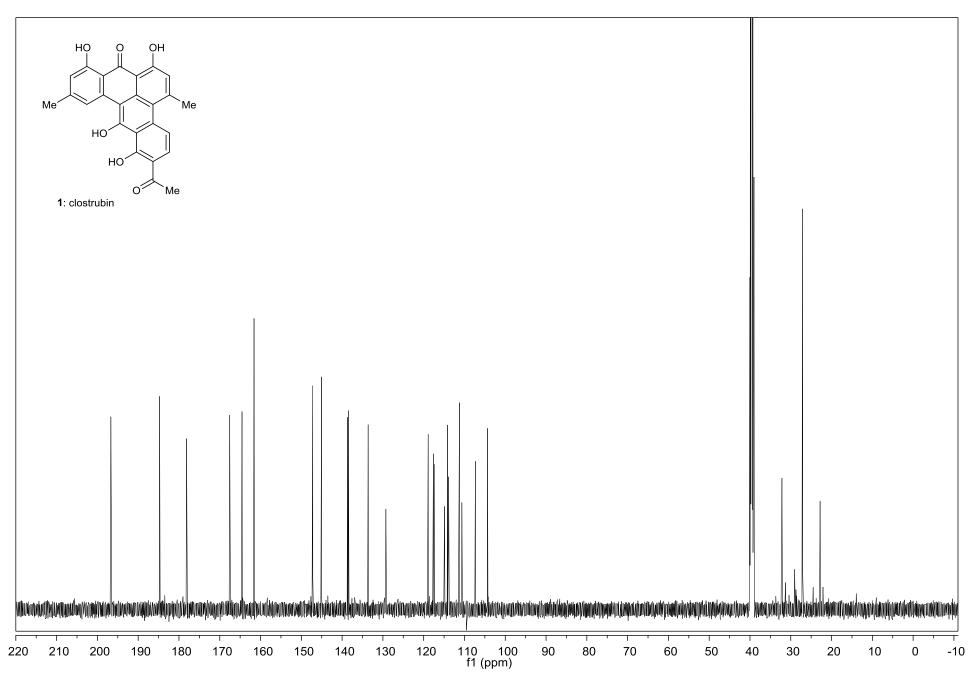
Supplementary Figure 19. ¹H NMR Spectrum of 4 (500 MHz, CDCl₃)



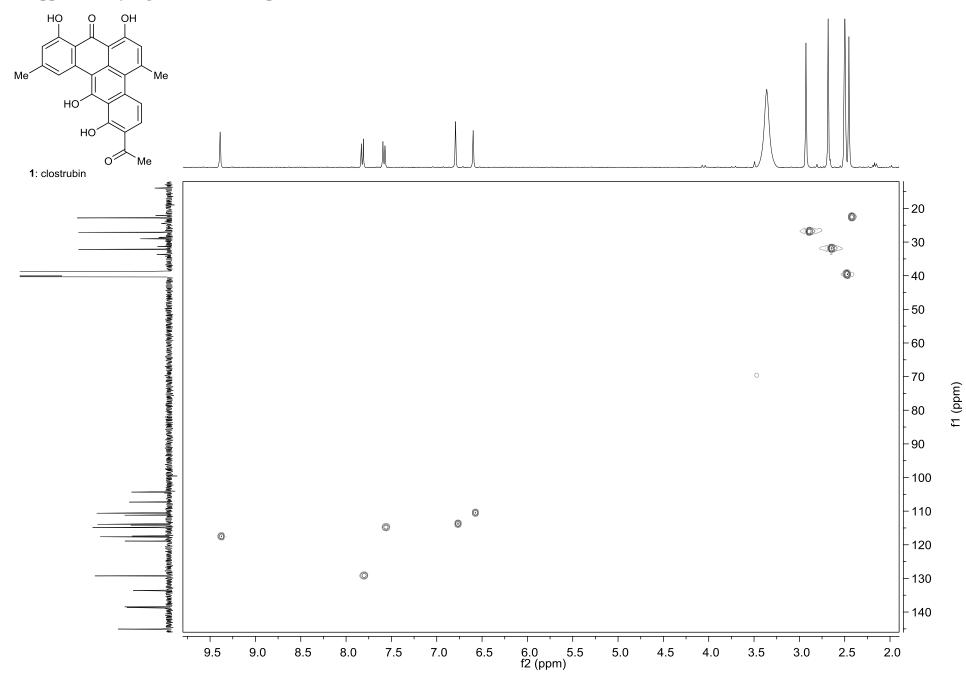

Supplementary Figure 20. ¹³C NMR Spectrum of 4 (101 MHz, CDCl₃)


Supplementary Figure 21. ¹H NMR Spectrum of 2 (500 MHz, CDCl₃)

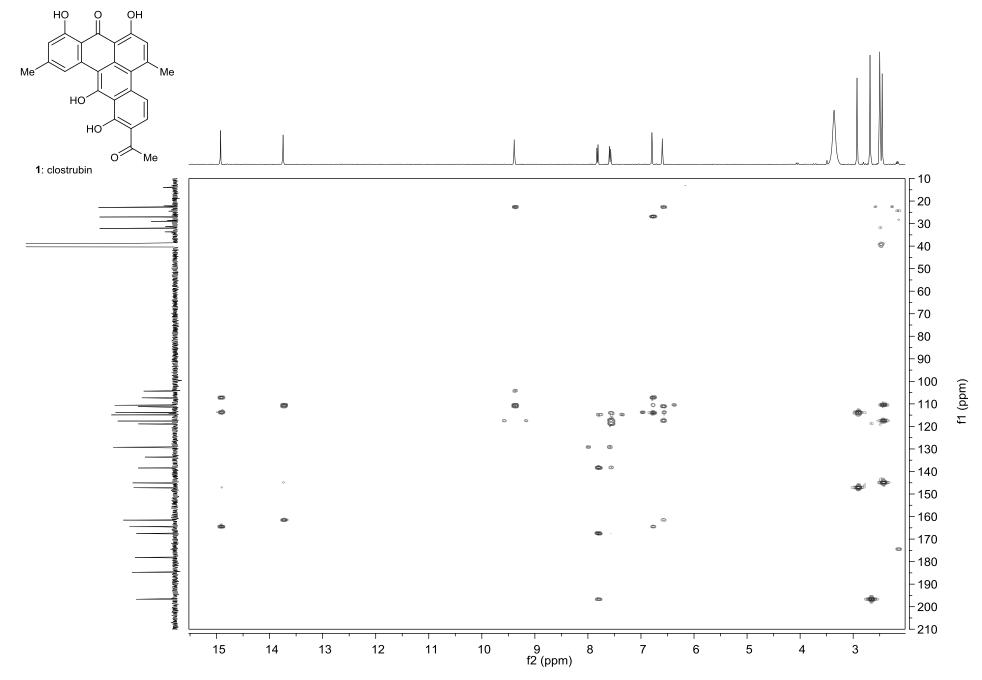

Supplementary Figure 22. ¹³C NMR Spectrum of 2 (126 MHz, CDCl₃)

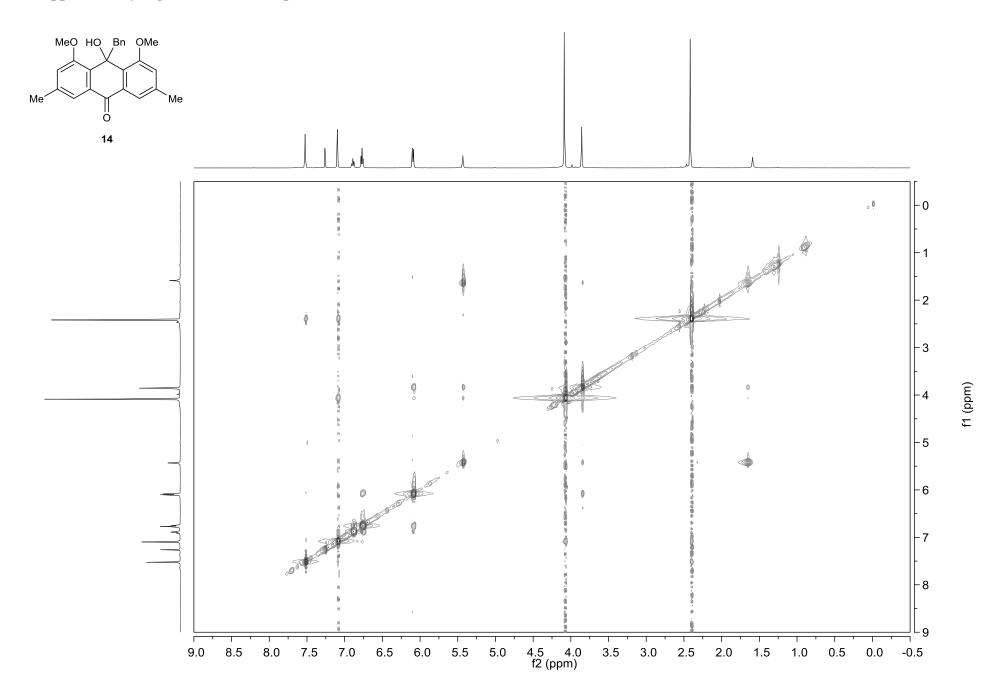

Supplementary Figure 23. ¹H NMR Spectrum of 24 (500 MHz, CDCl₃)

Supplementary Figure 24. ¹³C NMR Spectrum of 24 (101 MHz, CDCl₃)

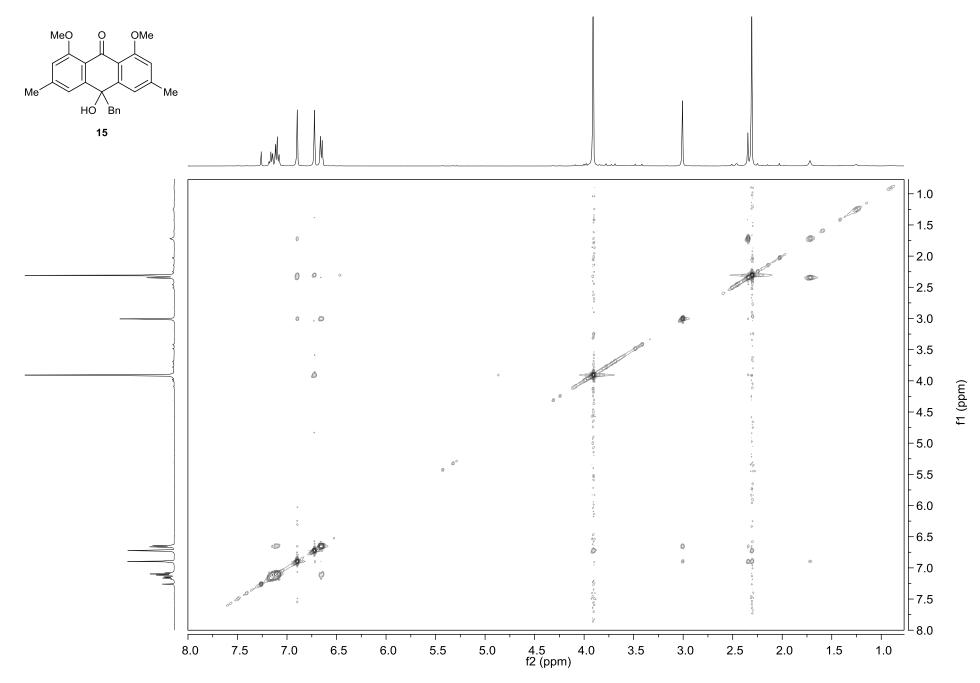


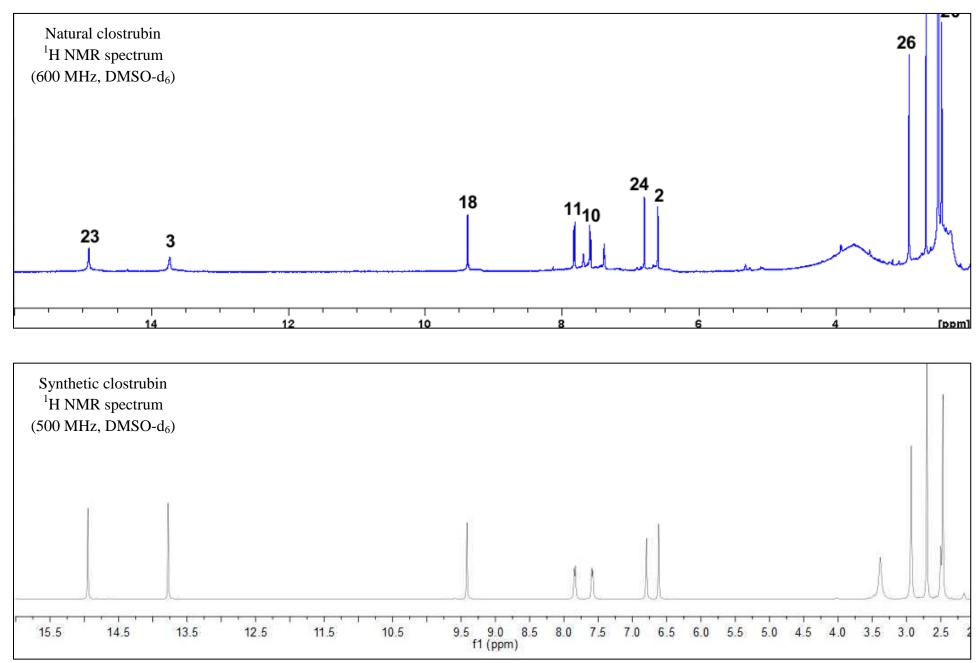
Supplementary Figure 25. ¹H NMR Spectrum of 1 (500 MHz, DMSO-d₆)

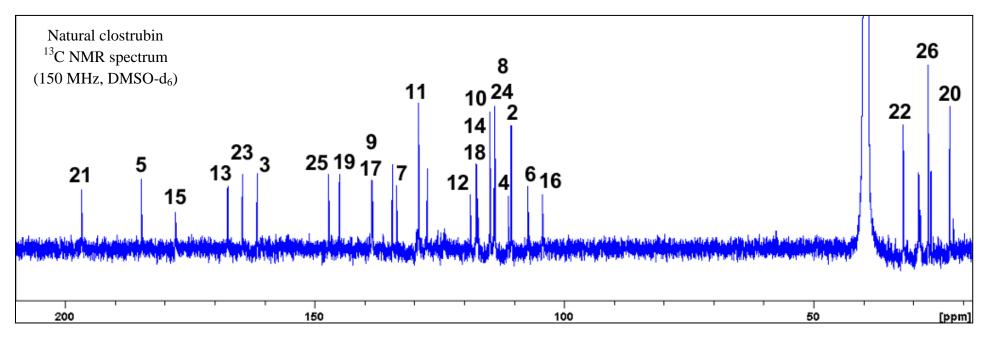


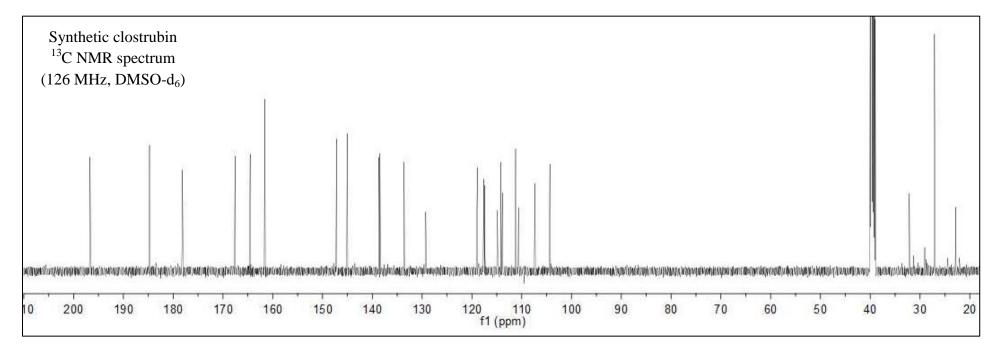

Supplementary Figure 26. ¹³C NMR Spectrum of 1 (126 MHz, DMSO-d₆)

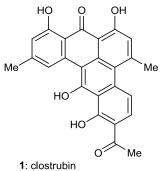
Supplementary Figure 27. HMQC spectrum of 1



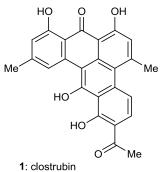

Supplementary Figure 28. HMBC spectrum of 1


Supplementary Figure 30. NOESY Spectrum of 15




Supplementary Figure 31. Comparison of the ¹H NMR Spectra of Natural and Synthetic Clostrubin

Supplementary Figure 32. Comparison of the ¹³C NMR Spectra of Natural and Synthetic Clostrubin

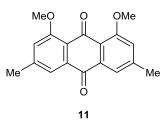


Supplementary Table 1. Comparison of the ¹H NMR (DMSO-d₆) data of natural and synthetic clostrubin

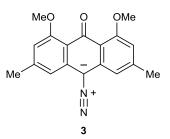
$\delta_{\rm H}$ [ppm,	atural mult, <i>J</i> (Hz)]) MHz	Synthetic δ _H [ppm, mult, <i>J</i> (Hz)] 500 MHz		Err (Natural–Synthetic) Δδ _H (ppm)
14.88	1 H, s	14.93	1 H, s	-0.05
13.70	1 H, s	13.75	1 H, s	-0.05
9.38	1 H, s	9.39	1 H, s	-0.01
7.80	1 H, d, 9.0	7.82	1 H, d, 9.0	-0.02
7.60	1 H, d, 9.0	7.58	1 H, d, 9.0	0.02
6.80	1 H, s	6.79	1 H, s	0.01
6.60	1 H, s	6.60	1 H, s	0
2.90	3 H, s	2.93	3 H, s	-0.03
2.68	3 H, s	2.68	3 H, s	0
2.42	3 H, s	2.45	3 H, s	-0.03

Supplementary Table 2. Comparison of the ¹³C NMR (DMSO-d₆) data of natural and synthetic clostrubin

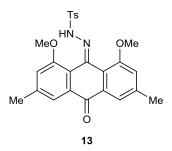
Natural δ _C (ppm) 150 MHz	Synthetic δ _C (ppm) 126 MHz	$\begin{array}{c} \mathbf{Err} \\ (Natural-Synthetic) \\ \Delta \delta_{C} \ (ppm) \end{array}$
196.8	196.7	0.1
184.7	184.8	-0.1
177.9	178.1	-0.2
167.4	167.6	-0.2
164.5	164.5	0
161.6	161.6	0
147.2	147.2	0
145.0	145.0	0
138.6	138.7	-0.1
138.4	138.5	-0.1
133.6	133.6	-0.1
129.2	129.3	-0.1
118.8	118.9	-0.1
117.6	117.6	-0.1
117.3	117.4	-0.1
114.9	114.9	-0.1
114.1	114.1	-0.1
114.0	113.9	0.1
111.2	111.2	0
110.6	110.6	0
107.3	107.3	0
104.3	104.4	-0.1

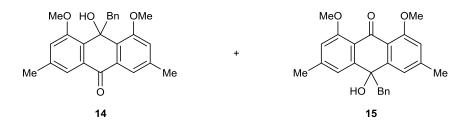

32.0	32.1	-0.1
27.0	27.1	-0.1
22.8	22.8	0

Supplementary Methods

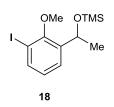

- I Experimental Procedures and Spectroscopic Data of Compounds
- II Crystallographic Data of Compound 13

I Experimental Procedures and Spectroscopic Data of Compounds

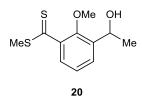

General Procedures. All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Tetrahydrofuran (THF) was distilled immediately before use from sodium-benzophenone ketyl. Methylene chloride (CH₂Cl₂), N,N-dimethylformamide (DMF), triethylamine (Et₃N), diisopropylethylamine (*i*Pr₂NEt), and chlorotrimethylsilane (TMSCl) were distilled from calcium hydride and stored under an argon atmosphere. Methanol (MeOH) was distilled from magnesium and stored under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Solvents for chromatography were used as supplied by Titan chemical. Reactions were monitored by thin layer chromatography (TLC) carried out on S-2 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and aqueous ammonium cerium nitrate/ammonium molybdate or basic aqueous potassium permanganate as developing agent. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. Preparative thin layer chromatography separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on Bruker AV-400 or Agilent 500/54/ASP instrument and calibrated by using residual undeuterated chloroform ($\delta_{\rm H}$ = 7.26 ppm) and CDCl₃ ($\delta_{\rm C}$ = 77.16 ppm), or undeuterated DMSO ($\delta_{\rm H}$ = 2.50 ppm) and DMSO-d₆ ($\delta_{\rm C}$ = 39.52 ppm), as internal references. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, quint = quintet, br = broad. IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer. Melting points (m.p.) are uncorrected and were recorded on a Shanghai Jingke SGW X-4 apparatus. High-resolution mass spectra (HRMS) were recorded on a Bruker APEXIII 7.0 Tesla ESI-FT or a Waters Micromass GCT Premier EI mass spectrometer.


Anthraquinone 11: To a stirred solution of 2,6-dibromo-1,4-benzoquinone¹ 5 (12.0 g, 45.1 mmol) in THF (8.0 mL) was added Brassard diene² 8 (25.4 g, 136 mmol) at -78 °C. The reaction mixture was stirred at that temperature for 6 h before it was added silica gel (25.4 g) and allowed to warm to 22 $^{\circ}$ C. The resultant suspension was stirred at that temperature for 2 h before it was quenched with saturated aq. NaHCO₃ (100 mL). The mixture so obtained was extracted with CH₂Cl₂ (3 \times 200 mL), and the combined organic phases were washed with brine (100 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent under vacuum, the residue was dissolved in DMF (30 mL). To this solution were sequentially added anhydrous K₂CO₃ (18.8 g, 136 mmol) and MeI (16.2 g, 7.10 mL, 114 mmol) at 22 °C. The reaction mixture was allowed to stir at that temperature for 18 h before it was quenched with saturated aq. NaHCO₃ (100 mL). The resultant mixture was extracted with CH₂Cl₂ (3 \times 200 mL). The combined organic phases were washed with water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was subjected to flash column chromatography for purification using EtOAc/petroleum ether (1:2) and then EtOAc/CH₂Cl₂ (1:4) as eluent to give anthraquinone 11 (6.07 g, 45 % for the two steps) as an orange powder. 11: $R_{\rm f}$ = 0.23 (silica, EtOAc:petroleum ether 1:1); IR (film): $v_{max} = 2923$, 2848, 1668, 1600, 1460, 1330, 1306, 1239, 1162, 1032, 954, 756 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.61$ (s, 2 H), 7.06 (s, 2 H), 3.96 (s, 6 H), 2.44 (s, 6 H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 184.48, 182.40, 159.67, 144.84, 134.54, 121.58, 119.45, 118.72, 56.43, 22.08 ppm; HRMS (m/z): calcd for $[M + H]^+$ calcd for $C_{18}H_{17}O_4^+$ 297.1121, found 297.1125.

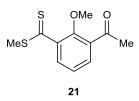
Diazoketone 3: To a suspension of anthraquinone 11 (1.15 g, 3.88 mmol) in AcOH (39 mL) was added a solution of SnCl₂•H₂O (5.28 g, 23.4 mmol) in aq. HCl (12 mL, 37 wt%) at 22 °C. The reaction mixture was stirred at that temperature for 30 min before it was diluted with water (100 mL). The resultant mixture was stirred for 10 min and extracted with CH_2Cl_2 (3 × 60 mL). The combined organic phases were washed with saturated aq. NaHCO₃ (2×80 mL) and brine (80 mL), dried over anhydrous Na₂SO₄, and filtered. After removal of the solvent under vacuum, the residue (crude anthranol 12) was immediately dissolved in CH₂Cl₂ (39 mL). To this solution were sequentially added DBU (1.78 g, 1.75 mL, 11.7 mmol) and TsN₃ (853 mg, 880 μ L, 4.32 mmol) at 22 °C. The reaction mixture was allowed to stir at that temperature for 20 h before it was diluted with CH_2Cl_2 (200 mL). The organic layer was sequentially washed with aq. HCl (100 mL, 1.0 M) and brine (100 mL), dried over anhydrous Na₂SO₄, and filtered. The solvent was evaporated under vacuum, and the residue was purified by flash column chromatography with EtOAc/CH₂Cl₂ (1:20 \rightarrow 1:8) to give diazoketone **3** (1.06 g, 89 % for the two steps) as a purple-red foam. **3**: $R_f = 0.33$ (silica, EtOAc:CH₂Cl₂ 1:8); IR (film): $v_{max} = 2948$, 2842, 2055, 1646, 1606, 1256, 1041, 822 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 6.51$ (s, 2 H), 6.42 (s, 2 H), 3.89 (s, 6 H), 2.31 (s, 6 H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 179.71, 161.68, 143.38, 130.72, 117.80, 112.19, 108.97, 64.65, 55.98, 22.11 ppm; HRMS (m/z): calcd for $[M + H]^+$ calcd for $C_{18}H_{17}N_2O_3^+$ 309.1234, found 309.1233.


Tosylhydrazone 13: To a stirred solution of anthraquinone 11 (500 mg, 1.69 mmol) in ethanol (3.0 mL) were added TsNHNH₂ (315 mg, 1.70 mmol) and TsOH (29.3 mg, 0.170 mmol) at 22 °C. The resultant mixture was warmed to 60 $\,^{\circ}$ C and stirred at that temperature for 2 h before it was cooled to 22 $\,^{\circ}$ C and quenched with saturated aq. NaHCO₃ (5 mL). The mixture so obtained was extracted with EtOAc (3 \times 20 mL). The combined organic phases were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent under vacuum, the residue was subjected to flash column chromatography for purification using EtOAc/petroleum ether (1:3) as eluent to give tosylhydrazone 13 (412 mg, 61 %) as a yellow solid. 13: $R_f = 0.53$ (silica, EtOAc:petroleum ether 1:2); m.p. 194–195 °C (EtOAc:petroleum ether 1:1); IR (film): $v_{max} = 3168, 2942, 2842, 1670, 1602, 1462,$ 1348, 1321, 1297, 1168, 1030, 862 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.36$ (s, 1 H), 8.00 (d, J = 8.0Hz, 2 H), 7.65 (s, 1 H), 7.49 (s, 1 H), 7.39 (d, *J* = 8.0 Hz, 2 H), 7.03 (s, 1 H), 6.96 (s, 1 H), 3.89 (s, 3 H), 3.77 (s, 3 H), 2.46 (s, 3 H), 2.44 (s, 3 H), 2.38 (s, 3 H) ppm; 13 C NMR (126 MHz, CDCl₃): $\delta = 184.69$, 156.49, 153.87, 143.95, 142.61, 140.17, 140.10, 136.53, 134.71, 133.94, 129.50, 128.13, 125.35, 121.83, 119.31, 119.18, 118.38, 117.29, 56.91, 56.51, 21.73, 21.70 ppm; HRMS (m/z): calcd for $[M + H]^+$ calcd for $C_{25}H_{25}N_2O_5S^+$ 465.1479, found 465.1481. CCDC 1028256 contains the supplementary crystallographic data of 13. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

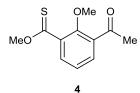
Tertiary Alcohols 14 and 15: To a stirred suspension of anthraquinone 11 (500 mg, 1.69 mmol) in THF (5.0 mL) was added BnMgBr (1.70 mL, 1.0 M in THF, 1.70 mmol) at 22 °C. The reaction mixture was stirred at that temperature for 15 min before it was quenched with saturated aq. NH₄Cl (5 mL) and extracted with EtOAc (3 \times 15 mL). The combined organic phases were washed with brine (10 mL), dried over anhydrous Na₂SO₄, and filtered. The solvent was evaporated under vacuum, and the residue was purified by flash column chromatography with EtOAc/petroleum ether $(2:5 \rightarrow 1:1)$ as eluent to give tertiary alcohols 14 (210 mg, 32 %) as a pale yellow oil and 15 (262 mg, 40 %) as a dark yellow oil. 14: $R_{\rm f} = 0.65$ (silica, EtOAc:petroleum ether 1:1); IR (film): $v_{\rm max} = 3523, 2937, 2840, 1664, 1609, 1455,$ 1341, 1282, 1078, 1035 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.52$ (s, 2 H), 7.10 (s, 2 H), 6.89 (t, J =7.3 Hz, 1 H), 6.77 (t, J = 7.0 Hz, 2 H), 6.09 (d, J = 7.7 Hz, 2 H), 5.43 (s, 1 H), 4.09 (s, 6 H), 3.85 (s, 2 H), 2.42 (s, 6 H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 183.49$, 157.10, 138.87, 136.62, 131.80, 130.38, 129.57, 127.33, 126.21, 119.74, 117.64, 75.18, 56.41, 45.69, 21.55 ppm; HRMS (m/z): calcd for $[M + Na]^+$ calcd for C₂₅H₂₄O₄Na⁺ 411.1567, found 411.1569. **15**: $R_f = 0.20$ (silica, EtOAc:petroleum ether 1:1); IR (film): $v_{max} = 3440$, 2940, 2840, 1662, 1607, 1459, 1304, 1251, 1046, 1031 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (dd, J = 7.2, 7.2 Hz, 1 H), 7.10 (dd, J = 7.3, 7.3 Hz, 2 H), 6.90 (s, 2 H), 6.72 (s, 2 H), 6.65 (d, J = 7.2 Hz, 2 H), 3.91 (s, 6 H), 3.01 (s, 2 H), 2.35 (s, 1 H), 2.31 (s, 6 H) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 183.35$, 158.75, 147.85, 143.45, 135.22, 130.93, 127.60, 127.02, 120.35, 117.47, 112.06, 73.89, 56.32, 55.12, 22.36 ppm; HRMS (m/z): $[M + H]^+$ calcd for C₂₅H₂₅O₄⁺ 389.1747, found 389.1748.



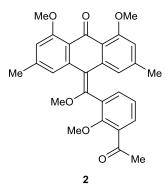
Methyl ether 17: To a stirred solution of phenol³ 16 (2.50 g, 10.1 mmol) in DMF (10 mL) were sequentially added anhydrous K₂CO₃ (2.09 g, 15.1 mmol) and MeI (2.14 g, 940 μ L, 15.1 mmol) at 22 °C. The reaction mixture was allowed to stir at that temperature for 24 h before it was diluted with water (40 mL). The resultant mixture was extracted with diethyl ether (3 × 60 mL). The combined organic phases were washed with water (40 mL) and brine (2 × 40 mL) and dried over anhydrous MgSO₄. After filtration and removal of the solvent under vacuum, methyl ether 17 (2.62 g, 99 %) was obtained as a pale yellow powder. 17: $R_f = 0.45$ (silica, EtOAc:petroleum ether 1:20); IR (film): $v_{max} = 2962, 2936, 2856, 2741, 1701, 1581, 1456, 1417, 1384, 1242, 1109, 995, 799. 781, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): <math>\delta = 10.32$ (s, 1 H), 8.03 (dd, J = 7.8, 1.7 Hz, 1 H), 7.82 (dd, J = 7.7, 1.7 Hz, 1 H), 7.01 (dd, J = 7.8, 7.7 Hz, 1 H), 3.95 (s, 3 H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 189.31, 162.66, 145.53, 130.28, 129.15, 126.51, 93.01, 64.01, 63.99 ppm; HRMS ($ *m*/*z*): [M]⁺ calcd for C₈H₇IO₂⁺ 261.9485, found 261.9491.



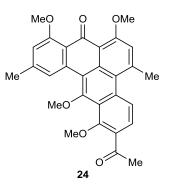
TMS ether 18: To a stirred solution of methyl ether **17** (2.62 g, 10.0 mmol) in THF (100 mL) was added MeMgBr (3.50 mL, 3.0 M in diethyl ether, 10.5 mmol) at 0 °C. The reaction mixture was stirred at that temperature for 10 min before HMPA (3.59 g, 3.50 mL, 20.0 mmol), Et₃N (1.53 g, 2.10 mL, 15.1 mmol), and TMSCl (1.61 g, 1.90 mL, 14.8 mmol) were sequentially added. The resultant mixture was stirred at 22 °C for 10 min and then quenched with saturated aq. NH₄Cl (50 mL). The mixture so obtained was extracted with EtOAc (3 × 80 mL). The combined organic phases were sequentially washed with water (80 mL) and brine (80 mL), dried over anhydrous Na₂SO₄, and filtered. The solvent was removed under vacuum, and the residue was purified by flash column chromatography with


Et₃N/petroleum ether (1:50) to give TMS ether **18** (3.28 g, 94 %) as a colorless oil. **18**: $R_f = 0.33$ (silica, petroleum ether); IR (film): $v_{max} = 2957$, 1459, 1416, 1366, 1352, 1250, 1133, 1095, 1031, 1004, 959, 862, 841, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.67$ (dd, J = 7.8, 1.5 Hz, 1 H), 7.51 (dd, J = 7.7, 1.5 Hz, 1 H), 6.87 (dd, J = 7.8, 7.7 Hz, 1 H), 5.18 (q, J = 6.3 Hz, 1 H), 3.83 (s, 3 H), 1.41 (d, J = 6.3 Hz, 3 H), 0.08 (s, 9 H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 155.74$, 141.47, 138.21, 127.52, 126.51, 91.53, 65.78, 61.45, 26.58, 0.23 ppm; HRMS (m/z): [M]⁺ calcd for C₁₂H₁₉IO₂Si⁺ 350.0194, found 350.0199.

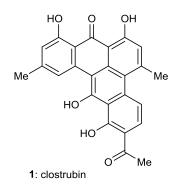
Benzylic alcohol 20: To a stirred solution of TMS ether 18 (1.12 g, 3.20 mmol) in THF (30 mL) was added EtMgBr (1.60 mL, 3.0 M in diethyl ether, 4.80 mmol) at 22 °C. The resultant mixture was warmed to 50 °C and stirred at that temperature for 1 h before CS₂ (7.56 g, 6.00 mL, 99.5 mmol) was added. The reaction mixture was heated to 70 °C and allowed to stir at that temperature for 3 h before it was cooled to 22 °C. MeI (1.82 g, 800 µL, 12.8 mmol) was added at 22 °C, and the resultant mixture was allowed to stir at that temperature for 8 h before it was quenched with aq. HCl (30 mL, 1.0 M) and extracted with EtOAc (3 \times 40 mL). The combined organic phases were sequentially washed with saturated aq. NaHCO₃ (50 mL) and brine (50 mL), dried over anhydrous Na₂SO₄, and filtered. After removal of the solvent under vacuum, the residue was purified by flash column chromatography with EtOAc/petroleum ether (1:6) to give benzylic alcohol 20 (534 mg, 67 %) as a bright orange oil. 20: $R_{\rm f}$ = 0.35 (silica, EtOAc:petroleum ether 1:4); IR (film): $v_{max} = 3401, 2971, 2935, 2826, 1584, 1459, 1418,$ 1222, 1069, 1012, 959, 887, 799 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51$ (dd, J = 7.7, 1.7 Hz, 1 H), 7.31 (dd, J = 7.7, 1.7 Hz, 1 H), 7.13 (dd, J = 7.7, 7.7 Hz, 1 H), 5.24 (dq, J = 6.5, 4.8 Hz, 1 H), 3.74 (s, 3 H), 2.78 (s, 3 H), 2.48–2.40 (m, 1 H), 1.51 (d, J = 6.5 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃): $\delta =$ 152.55, 140.87, 139.35, 128.61, 128.45, 124.19, 65.12, 62.34, 24.17, 21.16 ppm; HRMS (m/z): [M + Na^{+}_{1} calcd for $C_{11}H_{14}O_2S_2Na^{+}$ 265.0327, found 265.0333.



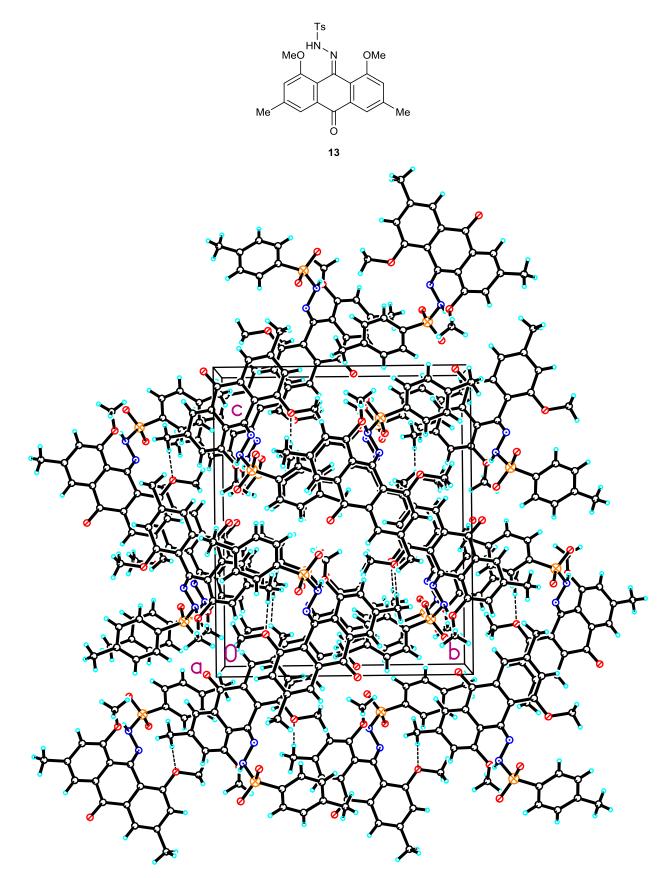
Ketodithioester 21: To a stirred solution of benzylic alcohol **20** (453 mg, 1.87 mmol) in CH₂Cl₂ (10 mL) was added Dess–Martin periodinane (951 mg, 2.24 mmol) at 22 °C. The resultant mixture was stirred at that temperature for 1 min before it was diluted with EtOAc (50 mL) and quenched with saturated aq. NaHSO₃ (20 mL). The aqueous layer was separated. The organic phase was washed with saturated aq. NaHCO₃ (30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and filtered. The solvent was evaporated under vacuum. The residue so obtained was subjected to flash column chromatography for purification using EtOAc/petroleum ether (1:15) as eluent to give ketodithioester **21** (371 mg, 83 %) as a bright orange oil. **21**: $R_f = 0.55$ (silica, EtOAc:petroleum ether 1:4); IR (film): v_{max} = 3067, 2997, 2939, 2842, 1687, 1578, 1460, 1410, 1355, 1281, 1255, 1063, 919, 799 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.63$ (dd, J = 7.7, 1.8 Hz, 1 H), 7.49 (dd, J = 7.6, 1.8 Hz, 1 H), 7.16 (dd, J = 7.7, 7.6 Hz, 1 H), 3.77 (s, 3 H), 2.79 (s, 3 H), 2.64 (s, 3 H) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 200.06$, 154.66, 141.74, 134.12, 132.54, 131.38, 123.86, 63.43, 30.68, 21.10 ppm; HRMS (m/z): [M + Na]⁺ calcd for C₁₁H₁₂O₂S₂Na⁺ 263.0171, found 263.0175.

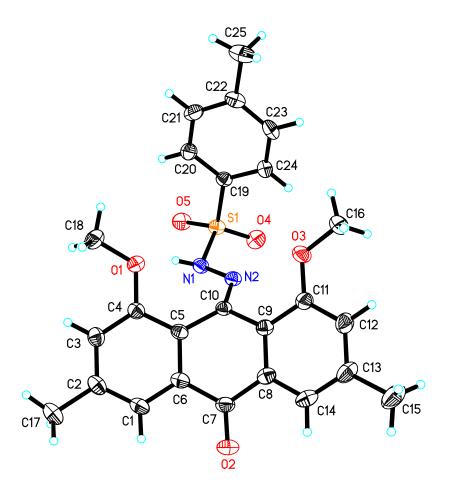


Thioester 4: To a stirred solution of ketodithioester **21** (200 mg, 0.832 mmol) in MeOH (8.0 mL) was added MeONa (450 mg, 8.33 mmol) at 22 °C. The resultant mixture was warmed to 50 °C and allowed to stir at that temperature for 4 h before it was cooled to 22 °C and quenched with water (10 mL). The mixture so obtained was extracted with EtOAc (3 × 20 mL), and the combined organic phases were washed with brine (2 × 20 mL) and filtered. After removal of solvent under vacuum, the residue was purified by flash column chromatography with EtOAc/petroleum ether (1:20) to give thioester **4** (124 mg, 66 %) as a bright yellow oil. **4**: $R_f = 0.42$ (silica, EtOAc:petroleum ether 1:8); IR (film): $v_{max} = 2995$,


2941, 2843, 1686, 1579, 1462, 1438, 1414, 1238, 1068, 1001, 804, 763 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.79$ (dd, J = 7.6, 1.6 Hz, 1 H), 7.66 (dd, J = 7.8, 1.6 Hz, 1 H), 7.15 (dd, J = 7.8, 7.6 Hz, 1 H), 4.31 (s, 3 H), 3.80 (s, 3 H), 2.63 (s, 3 H) ppm; ¹³C NMR (101 MHz, CDCl₃): $\delta = 213.56$, 200.27, 155.76, 136.06, 135.22, 134.22, 132.20, 123.72, 63.05, 59.78, 30.85 ppm; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₁₁H₁₂O₃SNa⁺ 247.0399, found 247.0401.

Tetrasubstituted olefin 2: To a stirred solution of thioester 4 (90.0 mg, 0.401 mmol) and Rh₂(OAc)₄ (8.9 mg, 0.020 mmol) in toluene (6.0 mL) was added diazoketone 3 (185 mg, 0.600 mmol) in five portions at 50 $\,^{\circ}$ C over a period of 40 min. The resultant mixture was stirred at that temperature for 15 min before it was cooled to 22 °C and Cu powder (200 mg, 3.15 mmol) was added. The mixture so obtained was heated to 110 $^{\circ}$ C and stirred at that temperature for 1.5 h before it was cooled to 22 $^{\circ}$ C. The resultant mixture was directly subjected to flash column chromatography for purification using EtOAc/CH₂Cl₂ (1:20 \rightarrow 1:6) as eluent to give tetrasubstituted olefin 2 (162 mg, 85 %) as a pale vellow foam. 2: $R_f = 0.33$ (silica, diethyl ether: CH₂Cl₂ 1:8); IR (film): $v_{max} = 3059, 2962, 2940, 2840, 1671,$ 1602, 1461, 1411, 1261, 1063, 1044, 803 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.61$ (s, 1 H), 7.58 (dd, J = 7.6, 1.7 Hz, 1 H), 7.24 (br s, 1 H), 7.03 (dd, J = 7.6, 7.6 Hz, 1 H), 6.71 (s, 1 H), 6.47 (s, 1 H), 6.13 (s, 1 H), 3.91 (s, 3 H), 3.84 (s, 3 H), 3.82 (br s, 3 H), 3.37 (s, 3 H), 2.49 (br s, 3 H), 2.42 (s, 3 H), 1.93 (s, 3 H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 200.67, 185.26, 157.89, 157.84, 152.66, 141.80, 140.91, 139.67, 137.89, 136.68, 133.82, 130.93, 127.40, 123.53, 122.15, 121.91, 121.66, 120.85, 116.20, 111.11, 110.24, 61.32, 56.67, 56.13, 55.97, 30.92, 22.45, 21.97 ppm; HRMS (m/z): $[M + H]^+$ calcd for $C_{29}H_{29}O_6^+$ 473.1959, found 473.1954.




Tetramethyl clostrubin 24: A solution of tetrasubstituted olefin 2 (195 mg, 0.412 mmol) in CHCl₃ (410 mL) in a quartz vessel was irradiated with UV light (λ = 365 nm, from four 8-Watt Hg lamps) at 22 °C for 8 h. The volatile was then removed under vacuum, and the residue was subjected to HPLC (Waters 2535Q, SunFire Prep C18 OBD column) using acetonitrile/water (70:30, with 0.07 vol% of AcOH, 10 mL/min) as eluent to give tetramethyl clostrubin 24 (t_R = 16.13 min). After removal of the solvent under vacuum, 24 (107 mg, 55 %) was obtained as a pale yellow foam. 24: R_f = 0.33 (silica, EtOAc:CH₂Cl₂ 1:8); IR (film): v_{max} = 2963, 2934, 2845, 1660, 1604, 1587, 1461, 1324, 1305, 1262, 1084, 1023, 989, 801 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 8.28 (d, *J* = 8.8 Hz, 1 H), 8.20 (s, 1 H), 7.78 (d, *J* = 8.8 Hz, 1 H), 7.19 (s, 1 H), 6.84 (s, 1 H), 4.09 (s, 3 H), 4.01 (s, 3 H), 4.00 (s, 3 H), 3.88 (s, 3 H), 3.04 (s, 3 H), 2.79 (s, 3 H), 2.47 (s, 3 H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 201.17, 184.32, 158.90, 158.60, 157.62, 156.86, 142.95, 142.16, 137.34, 136.36, 132.67, 131.12, 126.52, 123.26, 122.14, 121.34, 121.07, 120.54, 117.32, 116.99, 116.03, 111.95, 64.65, 62.54, 56.52, 56.22, 31.23, 27.38, 22.63 ppm; HRMS (*m/z*): [M + H]⁺ calcd for C₂₉H₂₇O₆⁺ 471.1802, found 471.1810.

Clostrubin (1): To a stirred solution of tetramethyl clostrubin 24 (59.4 mg, 0.126 mmol) in AcOH (19.0 mL) was added aq. HBr (6.3 mL, 48 wt%) at 22 $\,^{\circ}$ C. The resultant mixture was sealed in a vessel and heated to 120 $\,^{\circ}$ C. After stirring at that temperature for 10 h, the reaction mixture was cooled to 22 $\,^{\circ}$ C

and diluted with water (40 mL) and neutralized with aq. NaOH (75 mL, 5.0 M) followed by saturated aq. NaHCO₃ (50 mL). The mixture so obtained was extracted with EtOAc (3 × 60 mL). The combined organic phases were washed with brine (80 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent under vacuum, clostrubin (1, 49.8 mg, 95 %) was obtained as an orange powder. **1**: $R_{\rm f} = 0.42$ (silica, EtOAc:CH₂Cl₂ 1:8); IR (film): $v_{\rm max} = 2958$, 2925, 2852, 1583, 1465, 1407, 1377, 1191, 1088 cm⁻¹; ¹H NMR (500 MHz, DMSO-d₆): $\delta = 14.93$ (s, 1 H), 13.75 (s, 1 H), 9.39 (s, 1 H), 7.82 (d, *J* = 9.0 Hz, 1 H), 7.58 (d, *J* = 9.0 Hz, 1 H), 6.79 (s, 1 H), 6.60 (s, 1 H), 2.93 (s, 3 H), 2.68 (s, 3 H), 2.45 (s, 3 H) ppm; ¹³C NMR (126 MHz, DMSO-d₆): $\delta = 196.70$, 184.75, 178.14, 167.57, 164.54, 161.59, 147.20, 145.04, 138.67, 138.47, 133.62, 129.27, 118.89, 117.62, 117.42, 114.89, 114.16, 113.91, 111.22, 110.64, 107.32, 104.35, 32.14, 27.09, 22.81 ppm; HRMS (*m*/*z*): [M - H]⁻ calcd for C₂₅H₁₇O₆⁻ 413.1031, found 413.1031.

Crystal data

 $C_{25}H_{24}N_2O_5S$ $M_r = 464.52$ Orthorhombic, $P2_12_12_1$ a = 8.4096 (6) Å *b* = 15.0102 (12) Å *c* = 18.0794 (14) Å V = 2282.2 (3) Å³ Z = 4F(000) = 976

Data collection

CCD area detector diffractometer	3926 reflections with $I > 2\sigma(I)$
phi and ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan SADABS	θ_{max} = 26.0 °, θ_{min} = 1.8 °
$T_{\min} = 0.660, T_{\max} = 0.746$	$h = -10 \rightarrow 10$
13956 measured reflections	$k = -18 \rightarrow 11$
4505 independent reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2

 $D_{\rm x} = 1.352 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3872 reflections $\theta = 4.5\text{--}45.6\ensuremath{\,^\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 293 KPrismatic, yellow $0.21 \times 0.17 \times 0.12 \text{ mm}$

Hydrogen site location: mixed

Least-squares matrix: full

Special details

Least-squares matrix. funconstrained refinement $R[F^2 > 2\sigma(F^2)] = 0.040$ $w = 1/[\sigma^2(F_o^2) + (0.0619P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.102$ $(\Delta/\sigma)_{max} = 0.001$ S = 1.03 $\Delta\rho_{max} = 0.22$ e Å⁻³4505 reflections $\Delta\rho_{min} = -0.17$ e Å⁻³307 parametersquotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack
(2004), Acta Cryst. A60, s61).0 restraintsFlack parameter: 0.04 (4)

H atoms treated by a mixture of independent and

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	у	Z.	$U_{ m iso}$ */ $U_{ m eq}$
S 1	-0.08194 (8)	0.64978 (5)	0.83329 (4)	0.0402 (2)
N1	0.0560 (3)	0.59861 (16)	0.78303 (13)	0.0404 (6)
N2	0.0879 (3)	0.64192 (15)	0.71764 (12)	0.0385 (5)
01	0.3651 (2)	0.57418 (15)	0.81274 (11)	0.0485 (5)
O2	0.2863 (4)	0.4514 (2)	0.50231 (13)	0.0752 (8)
O3	0.1483 (3)	0.79858 (14)	0.64569 (11)	0.0607 (7)
O4	-0.2126 (2)	0.66787 (17)	0.78620 (12)	0.0557 (6)
O5	-0.1010(3)	0.59266 (14)	0.89564 (11)	0.0535 (6)
C1	0.4237 (4)	0.4012 (2)	0.63686 (18)	0.0491 (7)
H1	0.4380	0.3639	0.5964	0.059*
C2	0.4872 (4)	0.3773 (2)	0.7043 (2)	0.0486 (8)
C3	0.4686 (4)	0.4361 (2)	0.76306 (18)	0.0473 (8)
H3	0.5153	0.4225	0.8083	0.057*
C4	0.3820 (3)	0.51458 (19)	0.75602 (16)	0.0403 (7)
C5	0.3090 (3)	0.53668 (19)	0.68865 (15)	0.0375 (6)
C6	0.3393 (4)	0.4795 (2)	0.62815 (17)	0.0438 (7)
C7	0.2848 (4)	0.5049 (2)	0.55296 (17)	0.0465 (7)
C8	0.2418 (3)	0.5996 (2)	0.54042 (16)	0.0434 (7)
C9	0.2086 (3)	0.6545 (2)	0.60105 (14)	0.0389 (6)
C10	0.2029 (3)	0.61375 (18)	0.67607 (14)	0.0353 (6)
C11	0.1747 (4)	0.7447 (2)	0.58660 (16)	0.0457 (7)
C12	0.1732 (5)	0.7753 (2)	0.51405 (17)	0.0565 (9)
H12	0.1507	0.8351	0.5053	0.068*
C13	0.2039 (5)	0.7204 (3)	0.45425 (17)	0.0587 (9)
C14	0.2378 (4)	0.6318 (2)	0.46840 (17)	0.0525 (9)
H14	0.2581	0.5933	0.4292	0.063*

C15	0.2051 (7)	0.7575 (3)	0.37636 (18)	0.0873 (15)
H15A	0.1111	0.7926	0.3685	0.131*
H15B	0.2075	0.7093	0.3415	0.131*
H15C	0.2974	0.7942	0.3697	0.131*
C16	0.1372 (5)	0.8917 (2)	0.6334 (2)	0.0619 (10)
H16A	0.2322	0.9124	0.6095	0.093*
H16B	0.1248	0.9218	0.6799	0.093*
H16C	0.0470	0.9041	0.6025	0.093*
C17	0.5731 (5)	0.2901 (2)	0.7140 (2)	0.0635 (9)
H17A	0.4970	0.2431	0.7206	0.095*
H17B	0.6409	0.2934	0.7566	0.095*
H17C	0.6362	0.2782	0.6708	0.095*
C18	0.4702 (4)	0.5694 (3)	0.87442 (17)	0.0552 (9)
H18A	0.4513	0.5152	0.9011	0.083*
H18B	0.4519	0.6194	0.9064	0.083*
H18C	0.5782	0.5705	0.8573	0.083*
C19	0.0004 (3)	0.75145 (19)	0.86365 (15)	0.0376 (6)
C20	0.0882 (4)	0.7532 (2)	0.92847 (17)	0.0490 (7)
H20	0.1016	0.7015	0.9562	0.059*
C21	0.1552 (5)	0.8317 (2)	0.95138 (18)	0.0565 (9)
H21	0.2154	0.8326	0.9945	0.068*
C22	0.1350 (4)	0.9097 (2)	0.91158 (19)	0.0516 (8)
C23	0.0488 (4)	0.9059 (2)	0.84589 (19)	0.0538 (8)
H23	0.0367	0.9572	0.8177	0.065*
C24	-0.0190 (4)	0.8275 (2)	0.82200 (18)	0.0459 (7)
H24	-0.0772	0.8260	0.7783	0.055*
C25	0.2060 (6)	0.9966 (3)	0.9372 (3)	0.0814 (13)
H25A	0.1222	1.0371	0.9504	0.122*
H25B	0.2684	1.0220	0.8981	0.122*
H25C	0.2725	0.9861	0.9795	0.122*
H1A	0.138 (4)	0.585 (2)	0.8084 (16)	0.040 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0405 (4)	0.0409 (4)	0.0393 (3)	-0.0043 (3)	0.0088 (3)	-0.0024 (3)
N1	0.0462 (14)	0.0347 (13)	0.0404 (13)	0.0003 (12)	0.0030 (11)	-0.0002 (11)
N2	0.0483 (13)	0.0325 (12)	0.0349 (11)	-0.0034 (12)	0.0045 (10)	-0.0020 (10)
01	0.0522 (12)	0.0496 (12)	0.0437 (11)	0.0039 (10)	-0.0084 (9)	-0.0078 (10)
O2	0.1008 (19)	0.0696 (18)	0.0551 (14)	0.0246 (17)	-0.0104 (14)	-0.0281 (14)
O3	0.104 (2)	0.0345 (12)	0.0433 (12)	0.0071 (12)	0.0076 (12)	0.0026 (10)
O4	0.0417 (11)	0.0687 (15)	0.0566 (12)	-0.0030 (12)	0.0018 (10)	-0.0011 (12)
05	0.0661 (14)	0.0467 (12)	0.0476 (11)	-0.0116 (12)	0.0123 (11)	0.0040 (11)
C1	0.0463 (16)	0.0403 (17)	0.0605 (19)	0.0057 (15)	0.0038 (15)	-0.0113 (15)
C2	0.0392 (15)	0.0397 (17)	0.067 (2)	0.0035 (13)	0.0068 (15)	0.0010 (16)
C3	0.0398 (15)	0.0468 (18)	0.0552 (18)	0.0019 (14)	-0.0026 (14)	0.0036 (16)

C4	0.0379 (15)	0.0376 (15)	0.0453 (15)	-0.0016 (13)	0.0005 (12)	-0.0019 (14)
C5	0.0383 (14)	0.0320 (14)	0.0424 (15)	-0.0033 (12)	0.0043 (12)	-0.0025 (13)
C6	0.0416 (16)	0.0404 (16)	0.0493 (16)	0.0003 (13)	0.0034 (13)	-0.0098 (14)
C7	0.0470 (17)	0.0494 (18)	0.0430 (16)	0.0049 (15)	0.0028 (14)	-0.0121 (16)
C8	0.0412 (15)	0.0501 (18)	0.0390 (15)	-0.0034 (14)	0.0024 (12)	-0.0049 (15)
C9	0.0408 (14)	0.0391 (15)	0.0368 (14)	-0.0042 (13)	0.0032 (12)	-0.0017 (13)
C10	0.0387 (13)	0.0311 (13)	0.0360 (13)	-0.0030 (12)	-0.0004 (12)	-0.0037 (12)
C11	0.0562 (19)	0.0422 (17)	0.0388 (15)	-0.0013 (15)	0.0006 (14)	0.0009 (14)
C12	0.076 (2)	0.045 (2)	0.0477 (17)	-0.0101 (18)	-0.0059 (17)	0.0108 (16)
C13	0.074 (2)	0.065 (2)	0.0374 (16)	-0.0218 (19)	-0.0041 (16)	0.0052 (17)
C14	0.0570 (19)	0.064 (2)	0.0366 (15)	-0.0113 (17)	0.0058 (14)	-0.0098 (16)
C15	0.134 (4)	0.086 (3)	0.0420 (18)	-0.028 (3)	-0.009 (2)	0.009 (2)
C16	0.088 (3)	0.0356 (17)	0.062 (2)	0.0022 (18)	-0.0029 (19)	0.0025 (17)
C17	0.056 (2)	0.0471 (18)	0.087 (2)	0.0141 (17)	0.006 (2)	0.0000 (19)
C18	0.0551 (19)	0.061 (2)	0.0492 (18)	-0.0103 (16)	-0.0107 (15)	0.0004 (17)
C19	0.0395 (15)	0.0376 (15)	0.0357 (14)	0.0011 (12)	0.0080 (12)	-0.0021 (13)
C20	0.0641 (19)	0.0439 (17)	0.0389 (14)	0.0008 (17)	0.0007 (15)	0.0047 (14)
C21	0.070 (2)	0.055 (2)	0.0443 (16)	-0.0052 (17)	-0.0088 (16)	-0.0092 (17)
C22	0.0577 (19)	0.0397 (17)	0.0573 (19)	-0.0009 (15)	0.0098 (15)	-0.0090 (16)
C23	0.0604 (19)	0.0359 (16)	0.065 (2)	0.0096 (15)	0.0045 (17)	0.0085 (16)
C24	0.0496 (16)	0.0414 (16)	0.0467 (17)	0.0051 (13)	-0.0029 (14)	0.0041 (15)
C25	0.095 (3)	0.051 (2)	0.098 (3)	-0.007 (2)	0.002 (3)	-0.025 (2)

Geometric parameters (Å, 9

S1—O4	1.416 (2)	C12—H12	0.9300
S1—O5	1.425 (2)	C13—C14	1.384 (5)
S1—N1	1.662 (3)	C13—C15	1.515 (5)
S1—C19	1.764 (3)	C14—H14	0.9300
N1—N2	1.376 (3)	C15—H15A	0.9600
N1—H1A	0.85 (3)	C15—H15B	0.9600
N2—C10	1.296 (4)	C15—H15C	0.9600
O1—C4	1.368 (3)	C16—H16A	0.9600
O1—C18	1.425 (4)	C16—H16B	0.9600
O2—C7	1.218 (4)	C16—H16C	0.9600
O3—C11	1.358 (4)	C17—H17A	0.9600
O3—C16	1.419 (4)	C17—H17B	0.9600
C1—C2	1.378 (5)	C17—H17C	0.9600
C1—C6	1.382 (4)	C18—H18A	0.9600
C1—H1	0.9300	C18—H18B	0.9600
C2—C3	1.389 (5)	C18—H18C	0.9600
C2—C17	1.506 (4)	C19—C24	1.378 (4)
C3—C4	1.391 (4)	C19—C20	1.385 (4)
С3—Н3	0.9300	C20—C21	1.370 (5)
C4—C5	1.404 (4)	C20—H20	0.9300
C5—C6	1.413 (4)	C21—C22	1.384 (5)

65 610	1 450 (4)		0.0000
C5—C10	1.479 (4)	C21—H21	0.9300
C6—C7	1.484 (4)	C22—C23	1.393 (5)
C7—C8	1.484 (5)	C22—C25	1.508 (5)
C8—C14	1.389 (4)	C23—C24	1.376 (5)
C8—C9	1.399 (4)	C23—H23	0.9300
C9—C11	1.408 (4)	C24—H24	0.9300
C9—C10	1.489 (4)	C25—H25A	0.9600
C11—C12	1.390 (4)	C25—H25B	0.9600
C12—C13	1.384 (5)	C25—H25C	0.9600
O4—S1—O5	120.24 (14)	C13—C14—C8	120.8 (3)
O4—S1—N1	107.54 (13)	C13—C14—H14	119.6
O5—S1—N1	103.46 (13)	C8—C14—H14	119.6
O4—S1—C19	109.02 (15)	C13—C15—H15A	109.5
O5—S1—C19	108.57 (13)	C13—C15—H15B	109.5
N1—S1—C19	107.21 (13)	H15A—C15—H15B	109.5
N2—N1—S1	112.8 (2)	C13—C15—H15C	109.5
N2—N1—H1A	115 (2)	H15A—C15—H15C	109.5
S1—N1—H1A	112.4 (19)	H15B—C15—H15C	109.5
C10—N2—N1	119.3 (2)	O3—C16—H16A	109.5
C4	119.3 (2)	O3—C16—H16B	109.5
C11—O3—C16	118.3 (2)	H16A—C16—H16B	109.5
C2—C1—C6	121.4 (3)	O3—C16—H16C	109.5
C2—C1—H1	119.3	H16A—C16—H16C	109.5
C6—C1—H1	119.3	H16B—C16—H16C	109.5
C1—C2—C3	117.9 (3)	C2—C17—H17A	109.5
C1—C2—C17	121.0 (3)	C2—C17—H17B	109.5
C3—C2—C17	121.2 (3)	H17A—C17—H17B	109.5
C2—C3—C4	121.8 (3)	C2—C17—H17C	109.5
С2—С3—Н3	119.1	H17A—C17—H17C	109.5
C4—C3—H3	119.1	H17B—C17—H17C	109.5
O1—C4—C3	122.7 (3)	O1—C18—H18A	109.5
O1—C4—C5	116.8 (2)	O1—C18—H18B	109.5
C3—C4—C5	120.6 (3)	H18A—C18—H18B	109.5
C4—C5—C6	116.7 (3)	O1—C18—H18C	109.5
C4—C5—C10	125.6 (2)	H18A—C18—H18C	109.5
C6—C5—C10	117.7 (2)	H18B—C18—H18C	109.5
C1—C6—C5	121.4 (3)	C24—C19—C20	120.7 (3)
C1—C6—C7	118.8 (3)	C24—C19—S1	120.0 (2)
C5—C6—C7	119.8 (3)	C20—C19—S1	119.3 (2)
02	121.3 (3)	C21—C20—C19	119.4 (3)
02—C7—C6	121.0 (3)	С21—С20—Н20	120.3
C8—C7—C6	117.5 (3)	C19—C20—H20	120.3
C14—C8—C9	121.6 (3)	C20—C21—C22	121.3 (3)
C14—C8—C7	118.8 (3)	C20—C21—H21	119.3
C9—C8—C7	119.5 (3)	C22—C21—H21	119.3
0, 00 01			117.5

C8—C9—C11	117.5 (3)	C21—C22—C23	118.2 (3)
C8—C9—C10	118.6 (3)	C21—C22—C25	121.6 (3)
C11—C9—C10	123.9 (2)	C23—C22—C25	120.2 (3)
N2-C10-C5	128.1 (2)	C24—C23—C22	121.2 (3)
N2-C10-C9	114.7 (2)	C24—C23—H23	119.4
C5—C10—C9	116.2 (2)	C22—C23—H23	119.4
O3—C11—C12	122.9 (3)	C23—C24—C19	119.2 (3)
O3—C11—C9	117.4 (2)	C23—C24—H24	120.4
C12—C11—C9	119.7 (3)	C19—C24—H24	120.4
C13—C12—C11	122.6 (3)	C22—C25—H25A	109.5
C13—C12—H12	118.7	C22—C25—H25B	109.5
C11—C12—H12	118.7	H25A—C25—H25B	109.5
C14—C13—C12	117.8 (3)	C22—C25—H25C	109.5
C14—C13—C15	121.6 (3)	H25A—C25—H25C	109.5
C12—C13—C15	120.5 (4)	H25B—C25—H25C	109.5
O4—S1—N1—N2	49.3 (2)	C6C5C10N2	135.2 (3)
O5—S1—N1—N2	177.56 (19)	C4—C5—C10—C9	147.6 (3)
C19—S1—N1—N2	-67.8 (2)	C6—C5—C10—C9	-32.9 (3)
S1—N1—N2—C10	173.9 (2)	C8—C9—C10—N2	-138.3 (3)
C6—C1—C2—C3	-2.2 (5)	C11—C9—C10—N2	38.4 (4)
C6—C1—C2—C17	177.4 (3)	C8—C9—C10—C5	31.5 (4)
C1—C2—C3—C4	3.3 (4)	C11—C9—C10—C5	-151.9 (3)
C17—C2—C3—C4	-176.4 (3)	C16—O3—C11—C12	-7.5 (5)
C18—O1—C4—C3	16.8 (4)	C16—O3—C11—C9	170.9 (3)
C18—O1—C4—C5	-162.3 (3)	C8—C9—C11—O3	-177.6 (3)
C2—C3—C4—O1	-178.6 (3)	C10—C9—C11—O3	5.7 (5)
C2—C3—C4—C5	0.5 (4)	C8—C9—C11—C12	0.9 (5)
O1—C4—C5—C6	174.1 (2)	C10—C9—C11—C12	-175.8 (3)
C3—C4—C5—C6	-5.1 (4)	O3—C11—C12—C13	178.4 (4)
O1-C4-C5-C10	-6.5 (4)	C9-C11-C12-C13	0.1 (5)
C3—C4—C5—C10	174.4 (3)	C11—C12—C13—C14	-0.3 (6)
C2-C1-C6-C5	-2.5 (5)	C11—C12—C13—C15	-178.4 (4)
C2-C1-C6-C7	175.3 (3)	C12—C13—C14—C8	-0.5 (5)
C4—C5—C6—C1	6.1 (4)	C15—C13—C14—C8	177.6 (4)
C10-C5-C6-C1	-173.4 (3)	C9—C8—C14—C13	1.4 (5)
C4—C5—C6—C7	-171.7 (3)	C7—C8—C14—C13	-177.7 (3)
C10—C5—C6—C7	8.8 (4)	O4—S1—C19—C24	-24.8 (3)
C1—C6—C7—O2	13.9 (5)	O5—S1—C19—C24	-157.5 (2)
C5—C6—C7—O2	-168.2 (3)	N1-S1-C19-C24	91.3 (3)
C1—C6—C7—C8	-160.9 (3)	O4—S1—C19—C20	157.0 (2)
C5—C6—C7—C8	17.0 (4)	O5—S1—C19—C20	24.3 (3)
O2—C7—C8—C14	-14.3 (5)	N1—S1—C19—C20	-86.9 (3)
C6—C7—C8—C14	160.5 (3)	C24—C19—C20—C21	0.5 (5)
02—C7—C8—C9	166.6 (3)	S1-C19-C20-C21	178.6 (3)
C6—C7—C8—C9	-18.6 (4)	C19—C20—C21—C22	0.9 (5)

C14—C8—C9—C11	-1.6 (4)		C20-		223	-2.1	(5)
C7—C8—C9—C11	177.5 (3)		C20-		225	178.	9 (4)
C14—C8—C9—C10	175.3 (3)		C21-		224	1.9 ((5)
C7—C8—C9—C10	-5.6 (4)		C25-		224	-179	9.0 (3)
N1-N2-C10-C5	1.2 (4)		C22-		C19	-0.6	(5)
N1-N2-C10-C9	169.5 (2)		C20-		223	-0.6	(5)
C4—C5—C10—N2	-44.2 (4)		S1—	-C19—C24—C2	23	-178	8.8 (2)
Hydrogen-bond geometry (Å, 9							
D—H ···A		<i>D</i> —Н		$H \cdot \cdot A$	$D \cdot \cdot A$		D—H ···A
C18—H18 $C \cdots O4^{i}$		0.96		2.62	3.441 (4)		143
C20—H20 \cdots O2 ⁱⁱ		0.93		2.62	3.511 (4)		161
N1—H1A ···O1		0.85 (3)		1.92 (3)	2.680 (4)		148 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1/2, –*y*+1, *z*+1/2.

Supplementary References

- 1. Omura, K. Rapid conversion of phenols to *p*-benzoquinones under acidic conditions with lead dioxide. *Synthesis* 1145–1148 (1998).
- Savard, J. & Brassard, P. Regiospecific syntheses of quinones using vinylketene acetals derived from unsaturated esters. *Tetrahedron Lett.* 20, 4911–4914 (1979).
- Brady, R. M.; Hatzis, E.; Connor, T.; Street, I. P.; Baell, J. B. & Lessene, G. Synthesis of conformationally constrained benzoylureas as BH₃-mimetics. *Org. Biomol. Chem.* 10, 5230–5237 (2012).