
Supplementary Material:
QuasR: Quantification and annotation of short reads in R

Dimos Gaidatzis, Anita Lerch, Florian Hahne and Michael B. Stadler

Contents

Recipe 1: Download and install QuasR 1

Recipe 2: Copy sample data to a temporary directory 1

Recipe 3: Removing of adaptor sequences from raw reads 2

Recipe 4 (RNA-seq): Calculate RNA levels for differential expression analysis 2

Recipe 5 (ChIP-seq): Export wig files and create a metagene profile plot 5

Recipe 6 (Bis-seq): Calculate methylation states 7

Recipe 7: Allele-specific analysis 9

Appendix A: QuasR hardware requirements and running time 10

Appendix B: Session info and package versions 12

References 13

Recipe 1: Download and install QuasR

The following code will download and install the current version of QuasR from Bioconductor (see also
http://www.bioconductor.org/packages/release/bioc/html/QuasR.html):

source("http://bioconductor.org/biocLite.R")
biocLite("QuasR")

In addition to QuasR, this may also download and install additional packages that it depends on. After
the installation has finished, the library is loaded to make its functionality available:

library(QuasR)

Recipe 2: Copy sample data to a temporary directory

The following command copies the extdata folder that comes with QuasR into your current working
directory. This folder contains sample data that will be used in the recipes below.

1

http://www.bioconductor.org/packages/release/bioc/html/QuasR.html

file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

Recipe 3: Removing of adaptor sequences from raw reads

In this recipe, preprocessReads is used to process the raw sequence files in infiles and store the processed
sequences in outfiles. In the example here the processing consists of truncating the last three bases,
removing poly-adenine from the start and filtering out all reads that are shorter than 14 bases (after
truncation and trimming) or contain two or more undetermined nucleotides (nBases). As illustrated below,
input and output files can be compressed. preprocessReads returns a matrix with the number of processed
sequences for each file.

infiles <- file.path("extdata",c("rna_1_1.fq.bz2","rna_2_1.fq.bz2"))
outfiles <- file.path("extdata",paste("processed_",basename(infiles),sep=""))
res <- preprocessReads(filename = infiles,

outputFilename = outfiles,
truncateEndBases = 3,
Lpattern = "AAAAAAAAAA",
minLength = 14,
nBases = 2)

filtering extdata/rna_1_1.fq.bz2
filtering extdata/rna_2_1.fq.bz2

res

rna_1_1.fq.bz2 rna_2_1.fq.bz2
totalSequences 3002 3000
matchTo5pAdapter 466 463
matchTo3pAdapter 0 0
tooShort 107 91
tooManyN 0 0
lowComplexity 0 0
totalPassed 2895 2909

Recipe 4 (RNA-seq): Calculate RNA levels for differential expression
analysis

In this recipe, qCount is used to count alignments per gene and sample, generating a count table suitable
for identification of differentially expressed genes. It begins by creating spliced alignments to the reference
genome (here a fasta formatted file) using qAlign. Alternatively, the genome could be specified using
the name of a BSgenome package (e.g. "BSgenome.Hsapiens.UCSC.hg19"), which will be automatically
downloaded and indexed if necessary.

create alignments
sampleFile <- "extdata/samples_rna_single.txt"
genomeFile <- "extdata/hg19sub.fa"
proj <- qAlign(sampleFile, genome=genomeFile, splicedAlignment=TRUE)

Creating .fai file for: extdata/hg19sub.fa
alignment files missing - need to:
create alignment index for the genome

2

create 4 genomic alignment(s)
Creating an Rbowtie index for extdata/hg19sub.fa
Finished creating index
Testing the compute nodes...OK
Loading QuasR on the compute nodes...OK
Available cores:

nodeNames
computenode
1

Performing genomic alignments for 4 samples. See progress in the log file:
QuasR_log_5415792cc45.txt
Genomic alignments have been created successfully

proj

Project: qProject
Options : maxHits : 1
paired : no
splicedAlignment: TRUE
bisulfite : no
snpFile : none
Aligner : Rbowtie v1.4.5 (parameters: -max_intron 400000...)
Genome : hg19sub.fa (file)
##
Reads : 4 files, 2 samples (fastq format):
1. rna_1_1.fq.bz2 Sample1 (phred33)
2. rna_1_2.fq.bz2 Sample1 (phred33)
3. rna_2_1.fq.bz2 Sample2 (phred33)
4. rna_2_2.fq.bz2 Sample2 (phred33)
##
Genome alignments: directory: same as reads
1. rna_1_1_541536a0c9e5.bam
2. rna_1_2_54157626f567.bam
3. rna_2_1_541577b979ca.bam
4. rna_2_2_541531eafa2e.bam
##
Aux. alignments: none

For the definition of gene models, a GRanges object is constructed containing exon ranges named
by gene. Multiple ranges (exons) with the same name will be automatically combined by qCount in a
non-redundant manner, assuring that a single read is not counted multiple times. As an alternative, a
TranscriptDb object can be used to define gene models for qCount (see QuasR vignette for examples).

read in gene annotation
library(rtracklayer)
gr <- import("extdata/hg19sub_annotation.gtf")
gr <- gr[gr$type=="exon"]
names(gr) <- gr$gene_name

The third step is the call to qCount that counts for each gene the alignments overlapping with any of
its exons. The resulting count table also contains the cumulative length for each feature or combination
of features (here: the cumulative, non-redundant number of exonic bases in any transcript of that gene),
making it simple to scale the counts by length and sequencing depth and to calculate for example RPKM
(or FPKM) values or similar.

3

quantify expression
cnt <- qCount(proj, gr)

counting alignments...done
collapsing counts by sample...done
collapsing counts by query name...done

head(cnt)

width Sample1 Sample2
TNFRSF18 1370 26 2
TNFRSF4 1721 37 8
SDF4 4697 705 1078
B3GALT6 2793 62 344
AC108488.1 1104 0 0
RPS7 5583 2922 2224

calculate RPKM
geneRPKM <- t(t(cnt[,-1] /cnt[,1] *1000) /colSums(cnt[,-1]) *1e6)
head(geneRPKM)

Sample1 Sample2
TNFRSF18 2692 201.6
TNFRSF4 3049 642.0
SDF4 21287 31695.6
B3GALT6 3148 17009.4
AC108488.1 0 0.0
RPS7 74227 55013.4

Please note the RPKM values in our example are higher than what you would usually get for a real
RNA-seq dataset. The values here are artificially scaled up because our example data contains reads only
for a small number of genes.

The count table returned by qCount is also the basis for downstream statistical analysis using packages
such as edgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010), DESeq2 (Love et al., 2014), TCC (Sun
et al., 2013), DEXSeq (Anders et al., 2012) or baySeq (Hardcastle and Kelly, 2010). The code below shows
how it can be converted into a edgeR::DEGList or a DESeq2::DESeqDataSet object, although in this case
no replicates are available and thus the example data is not well suited for a statistical analysis.

prepare experiment information
geneinfo <- data.frame(identifier=rownames(cnt), width=cnt[,1])
group <- factor(c("wt","ko"))
sampleinfo <- data.frame(sampleName=colnames(cnt)[-1], group=group)

make a DGEList for edgeR
library(edgeR)
d <- DGEList(counts=cnt[,-1], group=group, genes=geneinfo)

make a DESeqDataSet for DESeq2
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData=cnt[,-1], colData=sampleinfo, design= ~ group)

4

Recipe 5 (ChIP-seq): Export wig files and create a metagene profile plot

In this recipe, reads from a ChIP-seq experiment are aligned, and the alignment density along the genome
is exported in wig format for visualization in public genome browsers.

create alignments
sampleFile <- "extdata/samples_chip_single.txt"
genomeFile <- "extdata/hg19sub.fa"
proj <- qAlign(sampleFile, genome=genomeFile)

alignment files missing - need to:
create 2 genomic alignment(s)
Testing the compute nodes...OK
Loading QuasR on the compute nodes...OK
Available cores:

nodeNames
computenode
1

Performing genomic alignments for 2 samples. See progress in the log file:
QuasR_log_529c441257ef.txt
Genomic alignments have been created successfully

proj

Project: qProject
Options : maxHits : 1
paired : no
splicedAlignment: FALSE
bisulfite : no
snpFile : none
Aligner : Rbowtie v1.4.5 (parameters: -m 1 --best --strata)
Genome : hg19sub.fa (file)
##
Reads : 2 files, 2 samples (fastq format):
1. chip_1_1.fq.bz2 Sample1 (phred33)
2. chip_2_1.fq.bz2 Sample2 (phred33)
##
Genome alignments: directory: same as reads
1. chip_1_1_529c104b2ed3.bam
2. chip_2_1_529c37ef2700.bam
##
Aux. alignments: none

export alignment density to wig files
qExportWig(proj, binsize=100, scaling=TRUE)

collecting mapping statistics for scaling...done
start creating wig file(s)...
Sample1.wig.gz (Sample1)
Sample2.wig.gz (Sample2)
done

Next, the alignment density around transcript start sites (TSS) is plotted, separately for sense and
antisense alignments to create a metagene profile. This plot reveals the average ChIP fragment size as a
shift between the sense and antisense alignment densities.

5

read in gene annotation
library(rtracklayer)
gr <- import("extdata/hg19sub_annotation.gtf")

get TSS coordinates
grFirstExon <- gr[gr$type=="exon" & gr$exon_number==1]
grFirstBase <- resize(grFirstExon,width=1,fix="start")
grTSS <- unique(grFirstBase)

quantify alignments around TSS (separately for each strand)
prS <- qProfile(proj, grTSS, upstream=3000, downstream=3000, orientation="same")

profiling alignments...done

prO <- qProfile(proj, grTSS, upstream=3000, downstream=3000, orientation="opposite")

profiling alignments...done

combine data from all TSS
prCombS <- do.call("+", prS[-1]) /prS[[1]]
prCombO <- do.call("+", prO[-1]) /prO[[1]]

metagene profile plot
prCombSsmooth <- filter(prCombS[1,], rep(1/100,100))
prCombOsmooth <- filter(prCombO[1,], rep(1/100,100))
plot(as.numeric(colnames(prCombS)), prCombSsmooth, type="l",

xlab="Position relative to TSS", ylab="Mean no. of alignments",
ylim=c(0,max(prCombSsmooth,prCombOsmooth,na.rm=TRUE)))

lines(as.numeric(colnames(prCombO)), prCombOsmooth, col="red")
legend(title="strand", legend=c("same as query","opposite of query"),

x="topleft", col=c("black","red"), lwd=1.5, bty="n", title.adj=0.1)

6

−3000 −2000 −1000 0 1000 2000 3000

0.
00

0.
10

0.
20

0.
30

Position relative to TSS

M
ea

n
no

. o
f a

lig
nm

en
ts

strand

same as query
opposite of query

Recipe 6 (Bis-seq): Calculate methylation states

The methylation of cytosines can be analyzed with QuasR using bisulphite sequencing (Bis-seq) data.
QuasR supports both directed and undirected Bis-seq libraries, as specified using the bisulfite parameter.
If this parameter is set, qAlign will bisulphite-convert both reads and genome and align the reads with a
three-letter alphabet. The in silico-converted cytosines are then put back into the resulting alignments,
and methylation states are quantified using qMeth. The resulting output can for example be used to
identify partially methylated domains (PMDs) and regions of low methylation (LMRs and UMRs) using
the MethylSeekR package (Burger et al., 2013).

create Bis-seq alignments
sampleFile <- "extdata/samples_bis_single.txt"
genomeFile <- "extdata/hg19sub.fa"
proj <- qAlign(sampleFile, genomeFile, bisulfite="dir")

alignment files missing - need to:
create alignment index for the genome
create 1 genomic alignment(s)
Creating an RbowtieCtoT index for extdata/hg19sub.fa
Finished creating index
Testing the compute nodes...OK
Loading QuasR on the compute nodes...OK
Available cores:

nodeNames
computenode
1

7

Performing genomic alignments for 1 samples. See progress in the log file:
QuasR_log_529c504bc758.txt
Genomic alignments have been created successfully

quantify CpG methylation
meth <- qMeth(proj, mode="CpGcomb", collapseBySample=TRUE)
meth

GRanges with 3110 ranges and 2 metadata columns:
seqnames ranges strand | Sample1_T Sample1_M
<Rle> <IRanges> <Rle> | <integer> <integer>
[1] chr1 [19, 20] * | 1 1
[2] chr1 [21, 22] * | 1 1
[3] chr1 [54, 55] * | 3 1
[4] chr1 [57, 58] * | 3 0
[5] chr1 [80, 81] * | 6 5
...
[3106] chr3 [44957, 44958] * | 8 7
[3107] chr3 [44977, 44978] * | 5 3
[3108] chr3 [44981, 44982] * | 4 3
[3109] chr3 [44989, 44990] * | 1 1
[3110] chr3 [44993, 44994] * | 1 1

seqlengths:
chr1 chr2 chr3
40000 10000 45000

visualize (chr3 contains two CpG islands)
percMeth <- mcols(meth)[,2] *100 /mcols(meth)[,1]
i <- as.logical(seqnames(meth)=="chr3")
plot(start(meth)[i], percMeth[i], pch=19, col="#22222266",

xlab="Position on chr3 (bp)", ylab="CpG methylation")

8

0 10000 20000 30000 40000

0
20

40
60

80
10

0

Position on chr3 (bp)

C
pG

 m
et

hy
la

tio
n

Recipe 7: Allele-specific analysis

All experiment types supported by QuasR (ChIP-seq, RNA-seq and Bis-seq; only alignments to the genome,
but not to auxiliaries) can also be analyzed in an allele-specific manner. For this, a file containing genomic
location and the two alleles of known sequence polymorphisms has to be provided to qAlign. The recipie
uses the file available from system.file(package="QuasR", "extdata", "hg19sub_snp.txt"). To avoid
an alignment bias, all reads are aligned separately to each of the two new genomes, which QuasR gener-
ates by injecting the polymorphisms listed in snpFile into the reference genome, only retaining the best
alignment for each read. While combining alignments from the two genomes into the final BAM file, each
read is classified into one of three groups:

• R: the read aligned better to the reference genome

• U: the read aligned equally well to both genomes (unknown origin)

• A: the read aligned better to the alternative genome

Using this alignment classification, the qCount, qProfile and qMeth functions will produce three counts
instead of a single count for each feature. The column names are suffixed by _R, _U and _A.

create alignments
sampleFile <- "extdata/samples_chip_single.txt"
genomeFile <- "extdata/hg19sub.fa"
snpFile <- "extdata/hg19sub_snp.txt"
proj <- qAlign(sampleFile, genome=genomeFile, snpFile=snpFile)

alignment files missing - need to:
create alignment index for the genome
create 2 genomic alignment(s)
Reading and processing the SNP file: extdata/hg19sub_snp.txt

9

Creating the genome fasta file containing the SNPs: extdata/hg19sub_snp.txt.hg19sub.fa.R.fa
Creating the genome fasta file containing the SNPs: extdata/hg19sub_snp.txt.hg19sub.fa.A.fa
Creating a .fai file for the snp genome: extdata/hg19sub_snp.txt.hg19sub.fa.R.fa
Creating a .fai file for the snp genome: extdata/hg19sub_snp.txt.hg19sub.fa.A.fa
Creating an Rbowtie index for extdata/hg19sub_snp.txt.hg19sub.fa.R.fa
Finished creating index
Creating an Rbowtie index for extdata/hg19sub_snp.txt.hg19sub.fa.A.fa
Finished creating index
Testing the compute nodes...OK
Loading QuasR on the compute nodes...OK
Available cores:

nodeNames
computenode
1

Performing genomic alignments for 2 samples. See progress in the log file:
QuasR_log_529c249a94b7.txt
Genomic alignments have been created successfully

get promoter regions from annotation
library(rtracklayer)
gr <- import("extdata/hg19sub_annotation.gtf")
names(gr) <- gr$transcript_id
grFirstExon <- gr[gr$type=="exon" & gr$exon_number==1]
grPromoter <- flank(unique(grFirstExon),0)+500

allele-specific quantification
cnt <- qCount(proj, grPromoter)

counting alignments...done

cnt[1:6,1:4]

width Sample1_R Sample1_U Sample1_A
ENST00000486728 1000 3 12 0
ENST00000328596 1000 4 14 0
ENST00000379268 1000 4 14 0
ENST00000453580 1000 0 7 0
ENST00000379236 1000 0 5 0
ENST00000497869 1000 0 5 0

Appendix A: QuasR hardware requirements and running time

Minimal hardware requirements

QuasR was designed to have low minimal hardware requirements, but to use multiple CPU cores if they
are available. It has been tested on a laptop computer with 4Gb of memory and a dual-core CPU. The
minimally required memory is mainly determined by the requirements of the alignment tool. By default,
this is bowtie which requires about 2.2Gb of memory for alignments to human or mouse genomes (2.9Gb
for paired-end experiments).

10

Hardware and data used in performance measurements

The QuasR running times reported below were obtained on an IBM® x3850 X5 computer with Intel®

Xeon® X7542 CPUs with a clock rate of 2.67GHz. Reported times correspond to elapsed time as mea-
sured by system.time (the minimum over three independent trials) and were obtained on three samples
selected from an RNA-seq dataset that is publicly available from GEO (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE33252) under the series accession GSE33252 (Tippmann et al., 2012). In total,
the three samples contain about 100 Mio. reads:

Sample name GEO Identifier No. reads No. alignments
ES_RNA_a GSM778487 38.5 Mio. 16.7 Mio.
NP_RNA_a GSM778489 33.8 Mio. 13.4 Mio.
TN_RNA_a GSM778491 30.4 Mio. 11.8 Mio.

Typical qAlign running time

We first measured the time to generate alignments with qAlign against the mouse genome (BSgenome
package pre-indexed with QuasR) using default parameters and different numbers of CPU cores (n):

cl <- makeCluster(n)
proj <- qAlign("samples.txt", "BSgenome.Mmusculus.UCSC.mm10", clObj=cl)

The following figure shows the observed execution times as a function of the number of CPU cores
(left panel, logarithmic axes) and the resulting speedup (ratio of serial over parallel time, right panel).
The ∼ 100 Mio. reads are aligned in about 5 hours on a single CPU, and that time linearly decreases up
to about four cores. Starting with eight cores, the speedup is sub-linear due to sequential parts in the
alignment generation process with contribute a constant amount of execution time.

Number of CPU cores (log scale)

qA
lig

n
ex

ec
ut

io
n

tim
e

(h
ou

rs
, l

og
 s

ca
le

)

1 2 4 8 16

0.
5

1.
0

2.
0

5.
0

measured
linear speedup

Number of CPU cores

S
pe

ed
up

 (T
s

T
p)

1 2 4 8 16

2
4

6
8

10

measured
linear speedup

Typical qCount running time

Next, we measured execution time of counting alignments for each gene with qCount. We first created a
GRanges query object gr extracted from the TxDb.Mmusculus.UCSC.mm10.knownGene package, which con-
tained a total of 218,671 exons for 23,725 genes. This object was used as a query in qCount to count
alignments in all three samples using:

qCount(proj, gr, clObj=cl)

The figure below shows qCount execution times (left) and speedup (right) for alignment counting. For
qCount, the speedup starts to become sub-linear already with four cores, which may be due to the larger

11

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33252
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33252

fraction of serial code in qCount compared to qAlign. Furthermore, the performance of the storage system
when accessing the alignment files can also limit the speedup.

Number of CPU cores (log scale)

qC
ou

nt
 e

xe
cu

tio
n

tim
e

(m
in

s,
 lo

g
sc

al
e)

1 2 4 8 16

0.
5

1.
0

2.
0

measured
linear speedup

Number of CPU cores

S
pe

ed
up

 (T
s

T
p)

1 2 4 8 16

2
4

6
8

10

measured
linear speedup

QuasR performance summary

The table below contains a summary of all benchmark results from above (time in seconds):

ncores Talignment Speedupalignment Tcount Speedupcount
1 18153 1.00 244 1.00
2 9819 1.85 125 1.96
4 4679 3.88 81 3.02
8 2706 6.71 45 5.42

16 1792 10.13 25 9.71

Appendix B: Session info and package versions

sessionInfo()

R version 3.1.1 (2014-07-10)
Platform: x86_64-apple-darwin13.1.0 (64-bit)
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
##
other attached packages:
[1] QuasR_1.5.4 Rbowtie_1.5.5 GenomicRanges_1.17.48
[4] GenomeInfoDb_1.1.26 IRanges_1.99.32 S4Vectors_0.2.8
[7] BiocGenerics_0.11.5 knitr_1.6
##
loaded via a namespace (and not attached):
[1] AnnotationDbi_1.27.19 base64enc_0.1-2
[3] BatchJobs_1.4 BBmisc_1.7
[5] Biobase_2.25.1 BiocInstaller_1.15.5

12

[7] BiocParallel_0.99.27 biomaRt_2.21.5
[9] Biostrings_2.33.15 bitops_1.0-6
[11] brew_1.0-6 BSgenome_1.33.9
[13] checkmate_1.4 codetools_0.2-9
[15] DBI_0.3.1 digest_0.6.4
[17] evaluate_0.5.5 fail_1.2
[19] foreach_1.4.2 formatR_1.0
[21] GenomicAlignments_1.1.30 GenomicFeatures_1.17.22
[23] grid_3.1.1 highr_0.3
[25] hwriter_1.3.2 iterators_1.0.7
[27] lattice_0.20-29 latticeExtra_0.6-26
[29] RColorBrewer_1.0-5 RCurl_1.95-4.3
[31] Rsamtools_1.17.36 RSQLite_0.11.4
[33] rtracklayer_1.25.20 sendmailR_1.2-1
[35] ShortRead_1.23.17 stringr_0.6.2
[37] tools_3.1.1 XML_3.98-1.1
[39] XVector_0.5.8 zlibbioc_1.11.1

References

Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26:139–140, 2010.

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome
Biology, 11:R106, 2010. doi: 10.1186/gb-2010-11-10-r106. URL http://genomebiology.com/2010/11/
10/R106/.

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion
for RNA-Seq data with DESeq2. bioRxiv, 2014. doi: 10.1101/002832. URL http://dx.doi.org/10.1101/
002832.

Jianqiang Sun, Tomoaki Nishiyama, Kentaro Shimizu1, and Koji Kadota. TCC: an R package for comparing
tag count data with robust normalization strategies. BMC Bioinformatics, 14:219, 2013. doi: 10.1186/
1471-2105-14-219. URL http://www.biomedcentral.com/1471-2105/14/219.

Simon Anders, Alejandro Reyes, and Wolfgang Huber. Detecting differential usage of exons from RNA-seq
data. Genome Research, 22:2008–2017, 2012. doi: 10.1101/gr.133744.111. URL http://genome.cshlp.org/
content/early/2012/06/21/gr.133744.111.full.pdf+html.

Thomas J Hardcastle and Krystyna A Kelly. baySeq: empirical bayesian methods for identifying differential
expression in sequence count data. BMC Bioinformatics, 11:422, 2010. doi: 10.1186/1471-2105-11-422. URL
http://www.biomedcentral.com/1471-2105/11/422.

Lukas Burger, Dimos Gaidatzis, Dirk Schuebeler, and Michael B. Stadler. Identification of active regulatory
regions from DNA methylation data. Nucleic Acids Research, 41:e155, 2013. doi: 10.1093/nar/gkt599.
URL http://nar.oxfordjournals.org/content/41/16/e155.full.

Sylvia C. Tippmann, Robert Ivanek, Dimos Gaidatzis, Anne Schoeler, Leslie Hoerner, Erik van Nimwegen,
Peter F. Stadler, Michael B. Stadler, and Dirk Schuebeler. Chromatin measurements reveal contributions
of synthesis and decay to steady-state mRNA levels. Mol Syst Biol, 8:593, 2012. doi: 10.1038/msb.2012.23.
URL http://msb.embopress.org/content/8/1/593.long.

13

http://genomebiology.com/2010/11/10/R106/
http://genomebiology.com/2010/11/10/R106/
http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1101/002832
http://www.biomedcentral.com/1471-2105/14/219
http://genome.cshlp.org/content/early/2012/06/21/gr.133744.111.full.pdf+html
http://genome.cshlp.org/content/early/2012/06/21/gr.133744.111.full.pdf+html
http://www.biomedcentral.com/1471-2105/11/422
http://nar.oxfordjournals.org/content/41/16/e155.full
http://msb.embopress.org/content/8/1/593.long

	Recipe 1: Download and install QuasR
	Recipe 2: Copy sample data to a temporary directory
	Recipe 3: Removing of adaptor sequences from raw reads
	Recipe 4 (RNA-seq): Calculate RNA levels for differential expression analysis
	Recipe 5 (ChIP-seq): Export wig files and create a metagene profile plot
	Recipe 6 (Bis-seq): Calculate methylation states
	Recipe 7: Allele-specific analysis
	Appendix A: QuasR hardware requirements and running time
	Appendix B: Session info and package versions
	References

