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APPENDIX A: Principal Scores for Three-way Nested and Two-way Crossed

Designs

Assuming noise-free scenarios and follow Zipunnikov et al. (2011), we provide details of

calculating principal scores in three-way nested model (N3) and two-way crossed design

(C2) as listed in Table 1 of the paper.

For model (N3) Yijk(t) = Xi(t) + Uij(t) + Wijk(t), i = 1, 2, · · · , I; j = 1, 2, · · · , Ji; k =

1, 2, · · · , nij, suppose we have balanced design ni1 = ni2 = · · · = niJi , and let Yijk =

{Yijk(t1), Yijk(t2), · · · , Yijk(tp)}′. Yi = {Yi11,Yi12, · · · ,Yi1ni1
, · · · ,YiJi1,YiJi2, · · · ,YiJiniJi

}

is the p × ni· matrix formed by stacking the functions side-by-side. Let Ỹi = vec{Yi},

then (N3) can be expressed in matrix notations as Ỹi = Bui, where B = [BX |BU |BW ] =

ΦX

...
ΦX

ΦU

...
ΦU

ΦW

. . .
ΦW

...
. . .

. . .

ΦX

...
ΦX

ΦU

...
ΦU

ΦW

. . .
ΦW


, BX = 1ni· ⊗ ΦX , BU = IJi ⊗ (1nij

⊗

ΦU), BW = Ini· ⊗ ΦW and ui = (ξi
X , ξi

U , ξi
W )′. Here ξi

X = (ξi1
X , · · · , ξXiN1

), ξi
U =

(ξi11
U , · · · , ξi1N2

U , · · · , ξiJi1U , · · · , ξiJiN2
U), and ξi

W = (ξi111
W , · · · , ξi11N3

W , · · · , ξiJiniJi
1
W ,

· · · , ξiJiniJi
N3

W ).

So the BLUP of ui would be

ûi = (B′B)−1B′Ỹi

=


ni·IN1 1′Ji ⊗ (niJiΦ

′
XΦU) 1′ni·

⊗ (Φ′XΦW )

IJi ⊗ (nijIN2) IJi ⊗ (1′nij
⊗Φ′UΦW )

Ini·N3


−1

Φ
′

XYi1ni·

vec{Φ′UYi(1nij ⊗ IJi)}

vec{Φ′WYi}



=


ni·IN1 1′Ji ⊗ nijCXU 1′ni·

⊗CXW

IJi ⊗ (nijIN2) IJi ⊗ (1′nij
⊗CUW )

Ini·N3


−1

(AN1
X )

′
S1/2U′i1ni·

vec{(AN2
U )

′
S1/2U′i(1nij

⊗ IJi)}

vec{(AN3
W )

′
S1/2U′i}





2 Biometrics, August 2014

The second row of the equation corresponds to the estimation obtained based on the

fast algorithm of the rank preserved transformation. AN1
X , AN2

U and AN3
W are the estimated

eigenfunctions in the lower-dimensional space. Yi = VS1/2Ui is derived from the SVD of

the whole data matrix. CXU is defined as (AN1
X )

′
AN2

U , CXW = (AN1
X )

′
AN3

W and CUW =

(AN2
U )

′
AN3

W .

For two-way crossed model (C2) with balanced design Yij(t) = Xi(t) + Zj(t) +Wij(t), i =

1, 2, · · · , I; j = 1, 2, · · · , J , we again have Ỹ = Bu, where Y = (Y11, · · · ,Yij, · · · ,YIJ)

and Ỹ = vec(Y). B = [BX |BZ |BW ], where BX = II ⊗ (1J ⊗ ΦX), BZ = 1I ⊗ (IJ ⊗

ΦZ) and BW = IIJ ⊗ ΦW . u = (uX ,uZ ,uW )′, and uX = (ξ1
X ′, · · · , ξIX

′
) where ξi

X =

(ξi1
X , ξi2

X , · · · , ξiN1
X)′; uZ = (ξ1

Z ′, · · · , ξJZ
′
) where ξj

Z = (ξj1
Z , ξj2

Z , · · · , ξjN2
Z)′; and

uW = (ξ11
W ′, · · · , ξIJW

′
) where ξij

W = (ξij1
W , ξij2

W , · · · , ξijN3
W )′.

The BLUP gives

û = (B′B)−1B′Ỹ

=


JIIN1 (1I1

′
J)⊗ (Φ′XΦZ) (II ⊗ 1′J)⊗ (Φ′XΦW )

IIJN2 (1′I ⊗ IJ)⊗ (Φ′ZΦW )

IIJN3


−1

vec{Φ′XY(II ⊗ 1J)}

vec{Φ′ZY(1I ⊗ IJ)}

vec(Φ′WY)



=


JIIN1 (1I1

′
J)⊗CXZ (II ⊗ 1′J)⊗CXW

IIJN2 (1′I ⊗ IJ)⊗CZW

IIJN3


−1

vec{(AN1
X )

′
S1/2U′(II ⊗ 1J)}

vec{(AN2
Z )

′
S1/2U′(1I ⊗ IJ)}

vec{(AN3
W )

′
S1/2U′}



Again, CXZ = Φ′XΦZ = (AN1
X )

′
AN2

Z , and similar definitions apply for CXW and CZW .
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APPENDIX B: Method of Moment Estimators for Additional Models

In this section, we list the method of moments estimators for covariance matrices of latent

processes in the additional models that are listed in Table 1 of the paper ‘Structured

Functional Principal Component Analysis’.

B.1 Multi-way nested model (NM)

The covariance operators of latent processes in multi-way nested model satisfy

E
[
{Yi1i2···ir (t)− Yh1h2···hr (t)}{Yi1i2···ir (s)− Yh1h2···hr (s)}

T ]

=



2Kr(t, s), if i1 = h1, · · · , ir−1 = hr−1, ir 6= hr

2{Kr−1(t, s) +Kr(t, s)}, if i1 = h1, · · · , ir−2 = hr−2, ir−1 6= hr−1

· · ·

2{K1(t, s) + · · ·+Kr(t, s)}, if i1 6= h1

Therefore, we have Hj(j = 1, 2, · · · , r) operators as

H1 =
1

k1 − n
∑

i1,i2,··· ,ir−1

∑
ir,hr

{Yi1···ir−1ir − Yi1···ir−1hr}{Yi1···ir−1ir − Yi1···ir−1hr}
T

=
2

k1 − n
Y(D1 −ET

1 E1)Y
T

H2 =
1

k2 − k1

∑
i1,··· ,ir−2
ir−1 6=hr−1

ir,hr

(Yi1···ir − Yi1···ir−2hr−1hr )(Yi1···ir − Yi1···ir−2hr−1hr )
T

=
2

k2 − k1
Y(D2 −ET

2 E2 −D1 + ET
1 E1)Y

T

H3 =
1

k3 − k2
{

∑
ir−1,ir,hr−1,hr

ir−2 6=hr−2
i1,··· ,ir−3

(Yi1···ir − Yi1···ir−3hr−2hr−1hr )(Yi1···ir − Yi1···ir−3hr−2hr−1hr )
T

−
∑

i1,··· ,ir−2
ir−1,ir,hr−1,hr

(Yi1···ir−2ir−1ir − Yi1···ir−2hr−1hr )(Yi1···ir−2ir−1ir − Yi1···ir−2hr−1hr )
T }

=
2

k3 − k2
Y(D3 −ET

3 E3 −D2 + ET
2 E2)Y

T

· · ·

Hj =
2

kj − kj−1
Y(Dj −ET

j Ej −Dj−1 + ET
j−1Ej−1)Y

T

· · ·
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where kj =
∑

i1i2···ir−j
n2
i1i2···ir−j

, j = 1, 2, · · · , r. The covariance operators are represented as

K̂r+1−j = (Hj+1 −Hj)/2

= Y
{ 1

kj+1 − kj
(Dj+1 −ET

j+1Ej+1 −Dj + ET
j Ej)

− 1

kj − kj−1
(Dj −ET

j Ej −Dj−1 + ET
j−1Ej−1)

}
YT

B.2 Two-way crossed design with sub-sampling (C2s)

With model Yijk(t) = Xi(t) + Zj(t) + Wij(t) + Uijk(t), i = 1, 2, · · · , I; j = 1, 2, · · · , J and

k = 1, 2, · · · , nij, we have

E{Yijk(t)− Yluv(t)}{(Yijk(s)− Yluv(s)}T

=



2KU (t, s), if i = l, j = u, k 6= v

2{KZ(t, s) +KW (t, s) +KU (t, s)}, if i = l, j 6= u

2{KX(t, s) +KW (t, s) +KU (t, s)}, if i 6= l, j = u

2{KX(t, s) +KZ(t, s) +KW (t, s) +KU (t, s)}, if i 6= k, j 6= u

The corresponding H operators are

HU =
1

k12 − n
∑
i,j

∑
k 6=v

(Yijk − Yijv)(Yijk − Yijv)
T =

2

k12 − n
Y(D12 −ET

12E12)Y
T

HZ =
1

k1 − k12

∑
i=1

∑
j 6=u

∑
k,v

(Yijk − Yiuv)(Yijk − Yiuv)
T

=
2

k1 − k12
Y(D1 −ET

1 E1 −D12 + ET
12E12)Y

T

HX =
1

k2 − k12

∑
i 6=l

∑
j

∑
k,v

(Yijk − Yljv)(Yijk − Yljv)
T

=
2

k2 − k12
Y(D2 −ET

2 E2 −D12 + ET
12E12)Y

T

HT =
1

n2 − k1 − k2 + k12

∑
i 6=l

∑
j 6=u

∑
k,v

(Yijk − Yluv)(Yijk − Yluv)
T

=
2

n2 − k1 − k2 + k12
Y(nI− 11T −D1 −D2 + D12 + ET

1 E1 + E2E2 −E12E
T
12)Y

T

where k1 =
∑

i n
2
i0, k2 =

∑
j n

2
0j and k12 =

∑
i,j n

2
ij.
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Multi-way crossed design (CM)

The most general model for crossed design is

Yi1i2···iru(t) = R
(1)
i1

(t)+R
(2)
i2

(t)+· · ·+R(r)
ir

(t)+· · ·+R(j1j2···jq)
ij1 ij2 ···ijq

(t)+· · ·+R(12···r)
i1i2···ir(t)+Ri1i2···iru(t)

with ik = 1, 2, · · · ,mk where k = 1, 2, · · · , r, u = 1, 2, · · · , ni1i2···ir ; 1 6 q 6 r, (j1, j2, · · · , jq) ∈

{1, 2, · · · , r}, j1 < j2 < · · · < jq and R
(j1j2···jq)
ij1 ij2 ···ijq

(t) has variance operator Kj1j2···jq , Ri1i2···iru(t)

has covariance operator KU . With similar procedure as in the previous sections, we can work

out the formula for the covariance operators. We omit the details here.

Appendix C: Additional Simulation Results

In this section, we present additional simulation results for both crossed deisgn (C2) and

nested design (N3). We also compare the effect of sample sizes for each latent process and

signal-to-noise ratio in estimating the eigenfunctions. We use different smoothing methods

for high- and low-dimensional data.

C.1 Two-way crossed designs (C2)

For the two-way crossed design (C2), we generate data from the following model
Yij(t) =

NX∑
k=1

φX
k (t)ξik +

NZ∑
l=1

φZ
l (t)ζjl +

NW∑
h=1

φW
h (t)ηijh, t ∈ T

ξik
i.i.d∼ N(0, λXk ), ζjl

i.i.d∼ N(0, λZl ) and ηijh
i.i.d∼ N(0, λWh )

(1)

where ξik’s, ζjl’s and ηijh’s are mutually uncorrelated. We choose NX = NZ = NW = 4 and

assign the true eigenvalues to be λXk = λZk = λWk = 0.5k−1, k = 1, 2, 3, 4. True eigenfunctions

are

φX
1 (t) = sin(2πt) φZ

1 (t) = sin(6πt) φW
1 (t) =

√
3(2t− 1)

φX
2 (t) = cos(2πt) φZ

2 (t) = cos(6πt) φW
2 (t) =

√
5(6t2 − 6t+ 1)

φX
3 (t) = sin(4πt) φZ

3 (t) = sin(8πt) φW
3 (t) =

√
5(20t3 − 30t2 + 12t− 1)

φX
4 (t) = cos(4πt) φZ

4 (t) = 1/
√
2 φW

4 (t) = 1
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These functions are measured on the grid T = 1/p, 2/p, · · · , 1. For the low-dimensional case,

we choose p = 100. Let I = 200 and J = 20 be the number of categories for the first-level

processes X(t) and Z(t), respectively.

We repeat simulation studies 100 times and display the estimated eigenfunctions for the

three latent processes in Figure 1. The algorithm estimates X(t) and W (t) very well. Given

the small sample size that is observed for Z(t), estimation for KZ and thus its eigenfunctions

are more noisy and less stable compared to those for X(t) and W (t). Estimation precision

gets improved when J increases. In fact, we examine another two scenarios where I = 20,

J = 200 and I = J = 200 (Figure 2 and 3) to evaluate the effect of sample size on recovering

each variance component. The accuracy of estimating the eigenfunctions increases when there

are more observations per latent process.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

C.2 Three-way nested designs (N3) with white noise for high-dimensional data

Here we show the simulation results for the high-dimensional (N3) model as presented in

Section 4 of the paper when p = 50, 000 and under different varying signal-to-noise ratios.

As described in more details in the paper, the true model is
Yijk(t) =

N1∑
l=1

φX
l (t)ξil +

N2∑
m=1

φU
m(t)ζijm +

N3∑
h=1

φW
h (t)ηijkh + εijkt,

ξil
i.i.d∼ N(0, λXl ), ζijm

i.i.d∼ N(0, λUm), ηijkh
i.i.d∼ N(0, λWh ) and εijkt

i.i.d∼ N(0, σ2)

where i = 1, · · · , I; j = 1, · · · , J ; k = 1, · · · , K; N1 = N2 = N3 = 4, λXk = λUk = λWk =

0.5k−1, k = 1, 2, 3, 4; t ∈ T = 1/p, 2/p, · · · , 1; I = 50, J = 5 and K = 5.

Figure 4, 5, 6 and 7 display the estimated eigenfunctions for the three hierarchical processes
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when σ = 0, 0.1, 0.5 and 1. When p is small, we can directly smooth the resulting covariance

matrices instead of smoothing the data. In particular, we have K̃W (t, s) = KW (t, s) + σ2δts,

K̃U(t, s) = KU(t, s), K̃X(t, s) = KX(t, s). Thus, we can smooth the off-diagonal elements of

K̃W (t, s), K̃U(t, s) and K̃X(t, s) and obtain an estimate of σ2. In high-dimensional case, the

simulated curves are smoothed first before applying SFPCA. The estimations (gray curves)

in general can well capture the shape of the true eigenfunctions (black curve). However,

when the observations are contaminated with large noise (σ = 0.5 or 1), the estimated

eigenfunctions are quite noisy, especially for processes X(t) and U(t) with small sample

sizes. In addition, within each process, the 3rd and 4th eigenfunctions are worse estimated

than the first two principal components.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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Figure 1. Plots display the estimated eigenfunctions for three latent processes X(t), Z(t)
and W (t), of two-way crossed design (C2) when I = 200 and J = 20. Results are shown as
50 random estimates of the eigenfunctions out of 100 simulations (shown in gray). The
true eigenfunctions are displayed in black curves. The eigenfunctions for the two first-
level processes X(t) and Z(t) are captured by two sets of trigonometric basis. While the
eigenfunctions for the second-level process W (t) are polynomial. Since the process-specific
sample sizes for X(t) and W (t) are larger than that of Z(t), eigenfunctions on the first and
third rows are better estimated than those on the second row.
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Figure 2. The estimated eigenfunctions when there are 20 samples in X(t) and 200 in
Z(t). Since the sample size for W (t) remains unchanged, the third row still demonstrate
decent accuracy. However, the eigenfuctions for X(t) are worsely estimated than those for
Z(t) in this scenario.
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Figure 3. The estimated eigenfuctions for (C2) model when I = J = 200. The estimations
for all the three processes are significantly improved due to the increased sample sizes.
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Figure 4. Plots demonstrate the estimated eigenfunctions (gray curves) for the three-way
nested design (N3) when p = 50, 000, I = 50, J = K = 5 and σ = 0. The true eigenfunctions
are displayed in black curves. The eigenfunctions for the first- and second-level processes
X(t) and U(t) are captured by two sets of trigonometric basis. The eigenfunctions for the
third-level process W (t) are polynomial. The simulated curves are smoothed first before
applying fast SFPCA algorithm.
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Figure 5. The estimated eigenfunctions for high-dimensional (N3) model when σ = 0.1.
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Figure 6. The estimated eigenfunctions for high-dimensional (N3) model when σ = 0.5.
φX
4 (t) and φU

4 (t) are especially noisy due to the small percentages of variance that these two
components explain in the data.
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Figure 7. The estimated eigenfunctions for high-dimensional (N3) model when σ = 1.
φX
4 (t) and φU

4 (t) also appear much less stable compared to the estimates when σ = 0.5.


