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Supplementary Information 

Supplementary Figures  

 

Supplementary Figure 1. SPLIT of simulated data in presence of background. SPLIT 

method (n = 2) applied to simulated time resolved STED images in presence of an increasing 

level of background. The parameters were set as follows: confocal FWHM = 200 nm, particle 

distance = 104 nm, 0 = 2.5 ns, kS = 10, S = 10
5
. The level of background, uniform for each 

image, was varied by changing the value of B as indicated in the figure. The spatial features that 

are visible on the calculated background image, even when the background level is set to B=0, 

are due to the fact that the sum of 1 and 2 does not correspond to the STED image. This is 

because we are using only 2 components to approximate the continuous distribution of decays 

generated by the STED beam. The colormap represents the simulated intensity. Scale bar 100 

nm. 
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Supplementary Figure 2. Spatial resolution in SPLIT versus time-gated CW-STED. (a,b) 

Effective PSF (E-PSF) for the super-resolved SPLIT (a) and time-gated (b) images obtained 

from simulations of single point-like particles using the following parameters: a confocal PSF 

with FWHM = 200 nm, an unperturbed lifetime 0 = 2.5 ns, a period T = 12.5 ns, B = 0, S = 10
5
 

and STED intensity levels kS = 10,  kS = 1 and kS = 0.1 respectively.  (c) The SPLIT FWHM (i.e. 

the FWHM of the first SPLIT component) is reported as a function of n and compared with the 

corresponding STED FWHM value (first point). (d) Simulation of two point-like particles with 

the following parameters: confocal FWHM=200 nm, particles distance = 104 nm, 0 = 4 ns, kS = 

1, S = 10
12

, B = 0, T = 12.5ns. In this particular example the gated image with maximum 

resolution is obtained by setting Tg = T = 12.5 ns. On the contrary, the resolution of the SPLIT 

image can be increased by using a higher number n of components (shown is n = 6). This 

example is provided to illustrate that time-gating and SPLIT operate in a different way and 

doesn’t correspond necessarily to a practical case. The colormap represents the simulated 

intensity normalized to the maximum value of each image. Scale bar 100 nm. 
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Supplementary Figure 3. Image of the parameter phase in confocal and CW-STED. (a,b) 

Images of the parameter phase=(T/2)(s/g) for confocal versus CW-STED simulated data and 

horizontal profile. Parameters of the simulation in (a): confocal FWHM = 200 nm, particles 

distance = 104 nm, kS = 10, 0 = 2.5 ns, S = 10
5
, B = 10

4 
, T = 12.5ns. Parameters of the 

simulation in (b): confocal FWHM=200 nm, particles distance = 104 nm, kS = 1, 0 = 4 ns, S = 

10
12

, B = 0, T = 12.5ns. Colormap represents the value of phase in ns. Scale bars 100 nm. 
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Supplementary Figure 4. SPLIT of simulated data in presence of noise (a,b) Simulations of 

SPLIT images (only first component is shown) obtained with different number of components n 

and in presence of noise. The parameters were set as follows: confocal FWHM=200 nm, 

particles distance = 104 nm, 0 = 2.5 ns. The noise was varied by changing the value of S as 

indicated in the figure. The signal-to-background ratio was kept to the constant value S/B=10 by 

adding a uniform level of background B. The SPLIT method was applied to time-resolved STED 

images with (a) kS = 10 and (b) kS = 1. The colormap represents the simulated intensity 

normalized to the maximum value of each image. Scale bars 100 nm. (c) Plot showing the 

dependence of the condition number kcond of the matrix M as a function of the number of 

components n along with the variation of FWHM. 
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Supplementary Figure 5. SPLIT of simulated STED imaging of cytoskeletal phantoms. 

Simulated time-resolved STED image of fiber-like structures similar to those found in 

cytoskeletal networks. The input parameters were: 0 = 3.1 ns, kS = 12.7, S = 120, B = 0.5. The 

average STED decay is fitted to equation (3) to obtain the parameter kS (kS = 12.5 from the fit in 

keeping with the input). The parameters 0 and kS are then used to split the STED image in the 

SPLIT series (n=2) (component 1, component 2, background (BKGD)). The colormap represents 

the simulated intensity. Scale bar 1 m. 
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Supplementary Figure 6. Determination of decoding parameters from experimental 

biological imaging data. Time-resolved confocal and STED images of microtubules in fixed 

HeLa cells labeled by immunocytochemistry with the organic dyes Alexa Fluor 488 (a), and 

Oregon-Green (b) (image size = 20 m × 20 m). Shown are the confocal image, the STED 

image, the average decay from all the pixels of both confocal and STED along with the fit 

according to equation (3) in main text. For the confocal decay we fix kS = 0. For the STED we fix 

0 to the value obtained from the confocal fit. The STED power measured at the back aperture of 

the objective lens was PSTED = 40mW. (c) Extraction of the parameter kS in smaller regions of 

interest (ROI) of different size selected from (a). The values of kS are reported in the 

corresponding table. 
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Supplementary Figure 7. Alternative regions of interest for the biological imaging data. 

Regions of interest (image size=5.5 m × 5.8 m) extracted from the full field of view showing 

microtubules in fixed HeLa cells labeled by immunocytochemistry with the organic dyes Alexa 

Fluor 488 (a), and Oregon Green 488 (b). Shown are the confocal image, the SPLIT (n=2, first 

component) image, the time-gated image (Tg=1 ns) and the intensity profile along the dashed 

line. The colormap represents the fluorescence intensity normalized to the maximum value of 

each image.   
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Supplementary Notes 

Supplementary Note 1 - Mathematical modeling of stimulated emission induced lifetime 

variations 

Modeling of the STED decay components 

For simplicity of calculation, we assume a 3D Gaussian profile of the confocal PSF, with 

waists along the x, y and z directions given by wx=wy=w and wz respectively: 

          ,2exp2exp,, 222222 zhrhwzwyxzyxh zrz   

where we have defined the radial part of the confocal PSF as: 

   ,2exp 222 wrrhr   

with .222 yxr   

Then we approximate the doughnut-shaped intensity distribution of the STED beam at the focus 

as a parabolic function of the radius and ignore for simplicity any dependence along z: 

    .
2

2

w

r
wIrI STEDSTED   

The instantaneous probability of stimulated emission depends linearly on the STED beam 

intensity: 

    ,0
2

SATSTEDSTED IrIr    
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where 0=1/0 is the decay rate of the spontaneous emission and the constant ISAT is usually 

called saturation intensity
1
 and represents the value of intensity for which STED=0. 

The resulting decay rate as a function of the position is: 

           .22
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where we have defined: 

  .SATSTEDS IwIk   

The time-dependent fluorescence intensity F(x,y,t) at each pixel can be expressed as: 

      ,''',,,,
2
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dzdydxezyxeKtyxF zw

z

w

r

tr



    

where K is a constant that depends on the quantum yield of the fluorophore, the maximum of the 

excitation intensity and the detection efficiency, r
2
= (x’-x)

2
 + (y’-y)

2
 and (x’,y’,z’) is the density 

of fluorophores. We conveniently switch to a system of cylindrical coordinates centered on the 

pixel (x,y) and integrate along z’ and ’: 
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with    

 

  
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. With this definition, C(r) describes the effective 

concentration of fluorophores in a concentric cylinder of radius r around the pixel position and z 

profile described by hz(z’). 



 10 

Discretization of the continuous distribution of STED decay components 

In order to approximate the continuous distribution of decays in a discrete number n of 

components, we split the integral into n parts: 

         
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We need to get n components which do not depend on the function C(r
2
). For this reason we 

expand C(r
2
) as a Fourier series inside the interval (ri-1

2
, ri

2
) of width ri

2
: 

     ...2sin 22
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and approximate the function C(r
2
) with the term of order zero: 

  .0
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Then we can write: 
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We are approximating C(r
2
) inside (ri-1

2
, ri

2
) with its average value within this interval, and 

ignoring its variations inside (ri-1
2
, ri

2
). 

We define the time-dependent decay of the i
th

 component as: 
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Then we can write the intensity as a linear combination of components: 

     .,,,
1

0
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
n

i
i

i tIyxCKtyxF  

The boundaries ri of the subdiffraction volumes (besides the extreme values r0 = 0 and rn = ∞) are 

chosen in such a way that: 
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With this choice, in the particular case of C(r
2
) = constant (homogeneous distribution of 

fluorophores), all the time-correlated photons, N-NBKGD , are split in equal number among the n 

components. 

A smaller value of the ratio r1/w is associated to a resolution improvement of the first image of 

the SPLIT series with respect to the confocal image. The FWHM of the effective PSF of the 

SPLIT image decreases with increasing values of n as shown in Supplementary Fig. 2 for the 

values kS = 10, kS = 1 and kS = 0.1. 

If we substitute the function C(r
2
) with a constant C, the analytical form of the decay is given by: 
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This function can be a good approximation for the average time-resolved decay of all the pixels 

of an image. Indeed, consider the simple case of an image obtained scanning around a point-like 

object, for which C(r
2
)(r

2
): 
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If we take into account the presence of uncorrelated background we obtain the following 

functional form: 
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which can be used to extract the parameter kS from the experimental data. 

Supplementary Note 2 – Explicit expression of the SPLIT image 

The first component of the SPLIT image (n=2) can be explicitly expressed as a function of the 

phasor components:  

            yxNyxsMyxgMyxNyxfyxN ,,,,,, 1
12

1
1111

   

Where N(x,y) is the time-integrated intensity and M
-1

 is the inverse of the matrix M. The images 

of the phasor components g(x,y) and s(x,y), extracted from the temporal dynamics, potentially 

encode the additional spatial information. This extra amount of information is evident for 

instance in the case of a CW-STED image whereas is absent in a confocal image (see 

Supplementary Fig. 3 where the images of phase(x,y)=(T/2)(s(x,y)/g(x,y)), a parameter 

independent from the amount of background, are reported). 

We can explicitly express the above equation as a function of the time-resolved fluorescence 

intensity and obtain: 
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         
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TT

dtTttyxFMdtTttyxFMyxN

0

1
12

0

1
111 2sin,,2cos,,,   

Now consider the case of CW-STED, where the temporal evolution of F(x,y,t) encodes spatial 

information through the spatial dependence of (r2
). By inserting the expression for F(x,y,t) we 

obtain: 
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Which describes analytically the image process formation of the SPLIT technique. 

Notably, the SPLIT imaging technique is still a linear and space-invariant system. The later 

properties vanish if the parameter kS changes across the sample. Similarly, a STED microscope is 

a space-invariant system only if kS is constant across the sample. For this reason it could be 

useful to depict the effective PSF for the SPLIT approach as: 
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and the image process formation as a convolution between the effective PSF and the fluorophore 

concentration . The first part of the E-PSF expression clearly shows the fusion of the spatio-

temporal information through the function (r2
). 

Depending on the coefficients Mij
-1

 which are obtained from the inversion of the decoding matrix 

M, this formula acts as a spatial filter by selecting the pixels characterized by a temporal 

dynamics similar to the first dynamics component. It should be noted that, in the specific case of 
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CW-STED, for low values of kS the separation into only n=2 components may not lead to 

significant reduction of the SPLIT E-PSF. If this is the case, further improvement in resolution 

can be obtained by separation into a larger number n of components, corresponding to an 

effective E-PSF
n

SPLIT containing additional terms which extract spatial information from higher 

harmonic content of the temporal dynamics. 

Supplementary Note 3 - Propagation of the noise in the SPLIT method 

The SPLIT image, Ni(x,y)=fi(x,y)N(x,y), is affected by additional noise brought in by the factor 

fi(x,y). The fraction fi is calculated at each pixel from the measurement of g and s at one or 

multiple harmonics. Here we discuss how the noise in the measurement of g and s (or higher 

harmonics components) is propagated to the fractions fi in the linear system MfP   depending 

on the properties of the matrix M. The error propagation through a linear system is usually 

quantified by considering the ‘condition number’ kcond defined as the product of the norms of the 

matrices M and its inverse M
-1

: 

1 MMcondk  

The parameter kcond is dependent on the particular choice of the n vectors (g1, s1,…), … , (gn, 

sn,…) which form the matrix M and which describe the n dynamics components. This parameter 

decreases with higher values of kS and increases with the value of n. This dependence is shown 

for the values kS = 1 and kS = 10 in Supplementary Fig. 4. It can be seen from the figure that it is 

possible, in principle, to get with the value kS =1 (n = 4) a resolution comparable to that obtained 

with kS = 10  (n=2) but with a noise propagation which is 2 orders of magnitude larger. Because 
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of the exponential dependence of kcond with respect to n, in most of the practical cases, noise may 

limit the use of SPLIT for high values of n. 
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