
Supplemental Material

Cadmium and Proliferation in Human Uterine Leiomyoma Cells: Evidence of a Role for EGFR/MAPK Pathways but Not Classical Estrogen Receptor Pathways

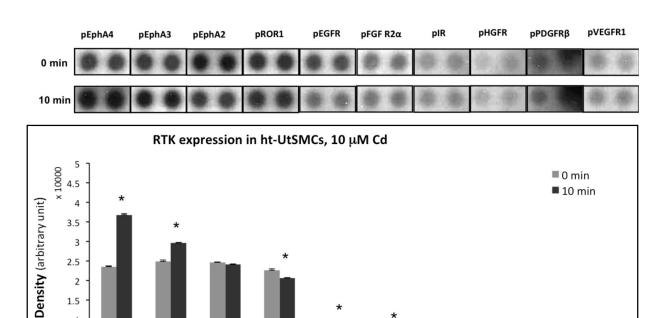

Xiaohua Gao, Linda Yu, Alicia B. Moore, Grace E. Kissling, Michael P. Waalkes, and Darlene Dixon

Figure S1. Cd does not bind to ER α or ER β . After a 4 h incubation period, increasing concentrations of E₂ showed high binding affinity to ER α (A) and ER β (B), while Cd was less likely to bind ER α (A) or ER β (B).

Figure S2. Transient transfection and luciferase assay in ht-UtLM cells and ht-UtSMCs. Relative luciferase activity in ht-UtLM cells and ht-UtSMCs transfected with hERα (A, C), hERβ (B, D), and $3\times$ -Vit-ERE-TATA-Luc plasmids that were treated with DMSO (vehicle control, Con), 10 nM E₂, or 0.01, 0.1, 1.0, 10, 20 μM of Cd in the presence or absence of 1.0 μM ICI 182,780. *p<0.05 vs. Control=Con. **p<0.05 vs. E₂. The experiments were repeated three times with independent cultures.

1.5 1 0.5 0

pEphA4

pEphA3

pEphA2

pROR1

Figure S3. Phosphorylation (p) of growth factor Receptor Tyrosine Kinases (RTKs) in ht-SMCs. Growth factor RTKs were highly expressed after Cd (10 μM) treatment for 10 min in ht-SMCs. The significantly upregulated RTKs were Ephrin Receptor A 4 (EphA4), and Ephrin Receptor A 3 (EphA3). ROR (ROR1), EGF Receptor (EGFR), and FGF Receptor (FGFR2α) showed significantly decreased expression. While Ephrin Receptor A 2 (EphA2), Insulin Receptor (IR), HGF Receptor (HGFR), PDGF Receptor beta (PDGFRβ), and VEGF Receptor (VEGFR1) did not show significant changes. The array was repeated at least 3 times. The bars represent the dot blot intensity values for ht-UtSMCs. *p<0.05 vs. 0 min.

pEGFR

pFGF R2α

pIR

pHGFR

pPDGFRβ

pVEGFR1