
Supplemental Table 1: Class I PI3K isoform alterations in cancer. 

Alteration Type Cancer Type Frequency of 
Alteration 

Sample Size 
Range 

References 

Class IA  
PIK3CA (p110α) 
Mutation Endometrial 10.3-53.0% 29-232 1, 2 

 Breast 7.1-35.5% 65-507 3-9 

 Ovarian (CC) 33.0% 97 10 

 Colorectal 16.9†-30.6%  72-195 11, 12 

 Bladder 5.0-20.0% 20-130 13-16 

 Lung (SCC) 20.0% 5 17 

 Lung (SQCC) 2.9-16.8% 35-178 17, 18 

 Lung (LCC) 11.9% 9 17 

 Lung (ADC) 0.6-4.3%  57-183 3, 17, 19, 20 

 Cervical 13.6% 22 2 

 Glioblastoma 4.3-11.0% 91-291 21-24 

 Head and neck 8.1-9.4% 32-74 25, 26 

 Esophageal 5.5% 145 27 

 Melanoma 5.0%  121 28 

 Prostate 1.3-3.6%   55-156 3, 29-31 

 Sarcoma 2.9% 207 32 

 Renal (CC) 1.0-2.9%   98-417 33, 34 

 Liver (HCC) 1.6% 125 35 

 Megalencephaly‡ 48.0% 50 36 

Copy number  Head and neck 9.1-100% 11-117 37-39 

gain/amplification Cervical 9.1-76.4% 22-55 2, 40 

 Lung (SQCC) 42.9-69.6% 28-52 17, 41, 42 

 Lung (SCC) 33.3-66.7%  3-12 17, 41 

 Lung (LCC) 16.7-37.5%  6-16 17, 41 

 Lung (ADC) 9.5-19.1%  47-74 17, 41 

 Lung (NSCLC) 12.0% 92 43 

 Lymphoma (MCL) 68.2% 22 44 

 Lymphoma (DLBCL) 16.7% 60 45 

 Ovarian 39.8%   93 46 

 Ovarian (Serous) 13.3-24.3%  60-74 47, 48 

 Gastric 36.4% 55 49 

 Thyroid 30.0%  110 50 

 Prostate 28.1%   32 16 

 Breast 8.7-13.4% 92-209 8, 9 

 Glioblastoma 1.9-12.2%   139-206 21, 22 

 Endometrial 10.3% 29 2 

 Thyroid 9.4% 128 51 

 Esophageal 5.7%  87 52 

 Leukemia (CLL) 5.6% 161 53 

Increased expression Prostate 40.0% 25 16 

PIK3CB (p110β) 
Mutation Breast 0.5% 183 3, 54 
Copy number  Lung (SQCC) 56.5% 46 42 
gain/amplification Thyroid 42.3% 97 50 
 Ovarian 5-26.9% NA-93 46, 55 
 Lymphoma (DLBCL) 20.0%  60 45 
 Glioblastoma 5.8% 103 56 
 Breast 4.9-5%  NA-81  55, 57 



Increased expression Prostate 46.7% 30 58 
 Glioblastoma 3.9% 103 56 
PIK3CD (p110δ) 
Copy number gain Glioblastoma 40.0% 10 59 
Increased expression Neuroblastoma 52.6% 19 60 
 Glioblastoma 5.8%  103 56 
PIK3R1 (p85α, p55α, p50α) 
Mutation Endometrial 19.8-32.8%  108-243 1, 61, 62 
 Pancreatic 16.7% 6 63 
 Glioblastoma 7.6-11.3%  91-291 22-24 
 Colorectal 4.6†-8.3%  108-195 11, 63 
 Melanoma 4.4% 68 64 
 Ovarian 3.8% 80 65 
 Esophageal 3.4% 145 27 

 Breast 1.1-2.8%  62-507 3, 4, 63, 66 
 Colon 1.7%  60 65 
Decreased expression Breast 61.8% 458 66 
 Prostate 17-75%* NA 67 
 Lung 19-46%*  NA 67 
 Ovarian 22%*  NA 67 
 Breast 18%* NA 67 
 Bladder 18%*  NA 67 
Copy number loss Ovarian 21.5% 93 46 
PIK3R2 (p85β) 
Mutation Endometrial 4.9%  243 61 
 Colorectal 0.9%  108 63 
 Megalencephaly‡ 22.0% 50 36 
Amplification Lymphoma (DLBCL) 23.3%  60 45 
Increased expression Colon 55.0%  20 68 
 Breast 45.7% 35 68 
PIK3R3 (p55γ) 
Copy number gain Ovarian 15.0% 93 46 
Class IB     
PIK3CG (p110γ) 
Copy number gain Ovarian 19.3%  93 46 
Increased expression Breast 77.5% 40 69 
 Prostate 72.4% 29 70 
 Medulloblastoma 52.9% 17 71 
PIK3R5 (p101) 
Mutation Melanoma 38.2%  68 64 
 Gastric 2.7% 37 63 
CC, clear cell; SCC, small cell carcinoma; SQCC, squamous cell carcinoma; ADC, adenocarcinoma; 
LCC, large cell carcinoma; NSCLC, non-small cell lung carcinoma; MCL, mantle cell lymphoma; CLL, 
chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; HCC, hepatocellular carcinoma 

‡ Megalencephaly syndromes are a collection of sporadic overgrowth disorders characterized by enlarged 
brain size and other distinct features. 

† Combined number of hypermutated and non-hypermutated colon and colorectal patient samples with 
mutations in the indicated gene. 

* Represents the percent reduction in gene expression. 

NA Sample size not available for this study. 
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Supplemental Table 2: Genetically engineered mouse models of PI3K isoforms in cancer. 

Genotype Phenotype Ref 
PIK3CA (p110α) 
KRasLA2; Pik3caRBD/RBD Protected from KRas-induced lung tumors  1 
Rosa26-Cre; KRasLA2; Pik3caRBD/flox Partial regression of KRas-induced lung tumors  2 
MMTV-Neu-IRES-Cre; Pik3caflox/flox Protected from Her2/neu-driven mammary tumors 3 
Pb-Cre; Ptenflox/flox; Pik3caflox/flox No effect on high-grade PIN driven by Pten loss 4 
Mx1-Cre; KRasG12D; Pik3caflox/flox Protection from MPN induced by oncogenic KRas 5 
Mx1-Cre, LSL-Shp2GOF/+; Pik3caflox/flox No effect on MPN induced by Shp2 GOF 6 

Pten−/+; Pik3caKD/+ Increased endometrial hyperplasia; reduced 
pheochromocytoma and thyroid tumors 

7 

CCSP-rtTA; Tet-op-PIK3CAH1047R  Develop lung tumors within 3 months 8 
MMTV-rtTA; tetO-PIK3CAH1047R Develop mammary tumors within 7 months 9 
MMTV-Cre; LSL-PIK3CAH1047R Surviving mice develop mammary tumors within 7 months 10 
MMTV-Cre; Pik3cae20H1047R/+ Develop mammary tumors within 16 months 11 
WAP-Cre; LSL-PIK3CAH1047R Develop mammary tumors within 36 days post-partum 10 
WAP-Cre; LSL-PIK3CAE545K  Develop mammary tumors within 80 days post-partum 12 
MMTV-Cre; p53flox/+; Rosa26-Pik3caH1047R Develop mammary tumors within 5 months 13 

MMTV-rtTA; tetO-Cre; ErbB3flox/flox; tetO-PIK3CAH1047R Delayed mammary hyperplasia but no effect on mammary 
tumor formation driven by PIK3CAH1047R  

14 

MMTV-rtTA; MMTV-Her2; tetO-PIK3CAH1047R Accelerated mammary tumor formation and increased lung 
metastasis compared to Her2 or PIK3CAH1047R alone 

15 

Ptenflox/flox; Pik3caLat-H1047R/+ Develop ovarian tumors within 16 weeks 16 

Gpa33-CrePR2; APCLOF/LOF; Pik3caLat-H1047R/+ Accelerated development of intestinal tumors compared to 
Pik3caH1047R or APCLOF alone 

17 

Fabp1-Cre; ApcMin/+; Rosa26-Pik3ca* Increased number and size of intestinal tumors compared 
to Pik3ca* or ApcMin/+ alone 

18 

Fabp1-Cre; Apcflox/+; Rosa26-Pik3ca* Increased number and size of intestinal tumors compared 
to Pik3ca* or Apcflox/+ alone 

18 

PIK3CB (p110β) 
MMTV-Her2/neuT; Pik3cbKD/KD Reduced number of mammary tumors driven by Her2/neuT 19 
Pb-Cre; Ptenflox/flox; Pik3cbflox/flox Protection from high-grade PIN driven by Pten loss 4 
Pten−/+; Pik3cbKD/+ Reduced PIN and prostate cancer driven by Pten loss 7 
(ARR)2PB-Pik3cbCA Develop VP PIN by 10 weeks and DLP PIN by 60 weeks 20 

MMTV-Neu-IRES-Cre; Pik3cbflox/flox Accelerated mammary tumor formation and increased 
tumor burden driven by Her2/neu 

3 

PIK3CA (p110α) and PIK3CB (p110β) 

K14-Cre; Ptenflox/flox; Pik3caflox/flox; Pik3cbflox/flox Loss of ¾ alleles of Pik3ca and Pik3cb blocks skin lesions 
and mammary hyperplasia driven by Pten loss 

21, 

22 

PIK3CD (p110δ) 



Pik3cdKD Reduced trafficking of NK cells; reduced NK cell 
extravasation to tumor cells 

23 

Mx1-Cre, LSL-Shp2GOF/+;Pik3cdKD/KD Reduced MPN induced by Shp2 GOF 6 
Lck-Cre; Ptenflox/flox; Pik3cd−/− No effect on development of T-ALL driven by Pten loss 24 
PIK3CG (p110γ) 
Lck-Cre; Ptenflox/flox; Pik3cg−/− No effect on development of T-ALL driven by Pten loss 24 
PIK3CD (p110δ) and PIK3CG (p110γ) 
Lck-Cre; Ptenflox/flox; Pik3cd−/−; Pik3cg−/− Delayed development of T-ALL driven by Pten loss 24 
PIK3R1 (p85α, p55α, p50α) 

CD19-Cre; Pik3r1flox/flox Reduced B-cell leukemia development driven by ex vivo 
infection with BCR-ABL  

25 

Albumin-Cre; Pik3r1flox/flox Develop liver tumors within 20 months  26 

Pten−/+; Pik3r1−/+ Increased intestinal polyps but no change in PIN driven by 
Pten loss 

27 

PIK3R2 (p85β) 
Pik3r2−/− Decreased number of colon tumors induced by AOM/DSS  28 
Pten−/+; Pik3r2−/− No change in intestinal polyps or PIN driven by Pten loss 27 

CD19-Cre; Pik3r2−/− No effect on B-cell leukemia development driven by ex vivo 
infection with BCR-ABL 

25 

PIK3R1 (p85α, p55α, p50α) and PIK3R2 (p85β) 
CCSP-rtTA; tetO-KRasG12D; Pik3r1flox/flox; Pik3r2−/− 

LSL-KRasG12D; Pik3r1flox/flox; Pik3r2−/− Decreased incidence of lung tumors driven by KRas  8 

CD19-Cre; Pik3r1flox/flox; Pik3r2−/− Blocked B-cell leukemia development driven by ex vivo 
infection with BCR-ABL 

25 

CCSP-rtTA; tetO-KRasG12D; Pik3r1flox/+; Pik3r2−/− 

LSL-KRasG12D; Pik3r1flox/+; Pik3r2−/− Increased incidence of lung tumors driven by KRas  8 

PIK3C2A (PI3K-C2α) 

Cdh5(PAC)-CreERT2; Pik3c2aflox/flox Decreased microvessel density and tumor burden of 
implanted tumors  

29 

RBD, Ras binding domain mutant; KD, kinase dead mutant; CA, constitutively active; Tg, 
transgene; PIN, prostate intraepithelial neoplasia; AOM/DSS, azoxymethane/dextran sodium 
sulfate; LOF, loss of function; GOF, gain of function; VP, ventral prostate; DLP, dorsal/lateral 
prostate; MPN, myoproliferative neoplasia 
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Supplemental Table 3: Combination of PI3K inhibitors with other targeted therapies in the 
clinic. 
 

Combination therapy trials 
Agent Company Target 

Agent Target Tumor types* Clinical trial* 
Class I pan-PI3K inhibitors 

 Lapatinib 
 Fulvestrant 
 Trastuzumab 
 Letrozole 

 EGFR/HER2 
 ER 
 HER2 
 Aromatase 

 Breast NCT01589861 
NCT01339442 
NCT01132664 
NCT01248494 

 Gefitinib 
 Erlotinib 

 EGFR 
 EGFR 

 NSCLC NCT01570296 
NCT01487265 

 Panitumumab  EGFR  Colorectal NCT01591421 
 Cetuximab  EGFR  Head and neck NCT01816984 
 Bevacizumab  VEGFR†  GBM 

 Renal cell 
NCT01349660 
NCT01283048 

 INC280  c-MET  GBM NCT01870726 
 Rituximab  CD20  B cell lymphoma NCT02049541 
 Imatinib  BCR-ABL  GIST NCT01468688 
 Vemurafenib 
 Encorafenib 

 BRAF 
 BRAF 

 Melanoma NCT01512251 
NCT01820364 

 Olaparib  PARP  TNBC 
 Ovarian 

NCT01623349 

 Abiraterone acetate  CYP17  Prostate NCT01634061 

BKM120 Novartis Class I 
PI3Ks 

 Erismodegib 
 Trametinib 
 MEK162 
 Everolimus 

 Smoothened 
 MEK1/2 
 MEK1/2 
 mTOR 

 Adv. solid tumors NCT01576666 
NCT01155453 
NCT01363232 
NCT01470209 

 Fulvestrant 
 Trastuzumab 

 ER 
 HER2 

 Breast NCT01437566 
NCT00928330 

 Bevacizumab  VEGFR†  Breast 
 NSCLC 

NCT00960960 
NCT00974584 

GDC0941 Genentech Class I 
PI3Ks 

 Erlotinib 
 Cobimetinib 

 EGFR 
 MEK1 

 Adv. solid tumors NCT00975182 
NCT00996892 

 Cetuximab  EGFR  Colorectal 
 SCCHN 

NCT01252628 
NCT01252628 

PX866 Oncothyreon Class I 
PI3Ks 

 Vemurafenib  BRAF  Melanoma NCT01616199 
 Trastuzumab 
 Letrozole 

 HER2 
 Aromatase 

 Breast NCT01042925  
NCT01082068 

XL147 Exelixis/ 
Sanofi-Aventis 

Class I 
PI3Ks 

 Erlotinib 
 MM121 
 XL647 

 EGFR 
 HER3 
 RTKs 

 Adv. solid tumors NCT00692640
NCT00704392 
NCT01436565 

Isoform-selective PI3K inhibitors  
 Cetuximab  EGFR  SCCHN NCT01602315 
 LJM716  HER3  ESCC NCT01822613 
 Encorafenib 
 Cetuximab 

 BRAF 
 EGFR 

 Colorectal NCT01719380 

 Fulvestrant  ER  Breast 
 Adv. solid tumors 

NCT02088684 
NCT01219699 

 Imatinib  BCR-ABL  GIST NCT01735968 
 Letrozole 
 Exemestane 
 TDM-1 
 LEE011 

 Aromatase 
 Aromatase 
 HER2‡ 
 CDK4/6 

 Breast NCT01870505 
NCT01870505 
NCT02038010 
NCT02088684 

 Everolimus 
 Exemestane 

 mTOR 
 Aromatase 

 

 Breast 
 Kidney 
 Pancreas 

NCT02077933 

 AUY922  HSP90  Gastric NCT01613950 

BYL719 Novartis p110α 

 Ganitumab 
 BGJ398 
 MEK162 

 IGF1R 
 FGFR 
 MEK1/2 

 Adv. solid tumors NCT01708161 
NCT01928459 
NCT01449058 

GDC0032 Genentech p110α  Letrozole 
 Fulvestrant 

 Aromatase 
 ER 

 Breast NCT01296555 

INK1117 Intellikine/ p110α  MLN0128  mTORC1/2  Adv. non- NCT01899053 



Millenium hematological 
malignancies 

SAR260301 Sanofi p110β  Vemurafenib  BRAF  Melanoma NCT01673737 
 Ofatumumab  CD20  CLL 

 SLL 
NCT02049515 IPI145 Infinity p110δ and 

p110γ 
 Rituximab  CD20  Hematologic 

malignancies 
NCT01871675 

AMG319 Amgen p110δ    NCT01300026 
 Rituximab  
 Ofatumumab 
 Everolimus 
 Bortezomib 

 CD20 
 CD20 
 mTOR 
 NFκB 

 INHL 
 CLL 
 MCL 

NCT01088048  

 GS9973  SYK  Hematologic 
malignancies 

NCT01796470 

CAL101 
(GS101) 

Gilead 
Sciences 

p110δ 

 Everolimus  mTOR  MCL NCT01088048 
Dual pan-PI3K and mTOR inhibitors 

 Fulvestrant  ER  Breast NCT01437566 
 Abiraterone acetate  CYP17  Prostate NCT01485861 

GDC0980 Genentech PI3K and 
mTOR 

 Bevacizumab  VEGFR†  Breast 
 Adv. solid tumors 

NCT01254526 
NCT01332604 

PF04691502 Pfizer PI3K and 
mTOR 

 PD0325901  MEK  Adv.solid tumors NCT01347866 

 Trastuzumab  HER2  Breast 
 Adv. solid tumors 

NCT01471847 
NCT01285466 

 Everolimus  mTOR  Breast 
 Renal cell 
 Adv. solid tumors 

NCT01482156 
 

NCT01508104 
 Abiraterone acetate  CYP17  Prostate NCT01717898 
 Letrozole  Aromatase  Breast NCT01248494 

BEZ235 Novartis PI3K and 
mTOR 

 Everolimus 
 MEK162 

 mTOR 
 MEK 

 Adv. solid tumors NCT01482156 
NCT01337765 

 Letrozole  Aromatase  Breast NCT01082068 XL765 Sanofi PI3K and 
mTOR  Erlotinib  EGFR  Adv. solid tumors NCT00777699 

 PD0325901  MEK  Adv. solid tumors NCT01347866 
 Cetuximab  EGFR  Colorectal 

cancer 
NCT01925274 

PF05212384 Pfizer PI3K and 
mTOR 

 Bevacizumab  VEFGR  Colorectal 
cancer 

NCT01937715 

 
* Data taken from an April 2014 search of http://www.clinicaltrials.gov. 
 
† Bevacizumab is a monoclonal antibody targeting VEGF that prevents signaling through VEFGR. 
 

‡ T-DM1 is a conjugate of the cytotoxic agent mertansine (DM1) to the monoclonal antibody 
Trastuzumab targeting HER2. 
 
TNBC, triple-negative breast cancer; GIST, gastrointestinal stromal tumor; NSCLC, non-small cell 
lung carcinoma; ESCC, esophageal squamous cell carcinoma; SCCHN, squamous cell 
carcinoma of the head and neck; sqNSCLC, squamous non-small cell lung cancer; TCC, 
transitional cell carcinoma; INHL, indolent non-Hodgkin lymphoma; MCL, mantle cell lymphoma; 
CLL, chronic lymphocytic leukemia; SLL, small lymphocytic leukemia; ALL, acute lymphoblastic 
leukemia; AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; MM, multiple 
myeloma; CRPC, castration-resistant prostate cancer; GBM, glioblastoma multiforme 
 
 
 


