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Supplemental Information 

 

Derivation of dynamic noise equations 

We defined two-node regulatory systems in which protein A constitutively expressed at 

rate ��� = �� , either activates: ��� = �	�

�
��, or represses: ��� = �	

�
��, synthesis of its downstream 

target gene, B. We assume that expression of A is independent of B and that degradation of both, 

A and B, is a first-order, linear process dependent only on the concentration of the respective 

protein: ��� = 
��, and	��� = 
��. In our model, each reaction produces or degrades a single 

molecule at a time. 

Based on previously published work by Engblom (Engblom, 2006 and equation 4 in main 

text), the following equations can be derived for the systems described above:  

������ = −2������ ��� + ��� + ��� (1) 

������ = −������ ��� + ������ ��� − ������ ��� (2) 

������ = 2������ ��� − 2������ ��� + ��� + ��� (3) 

In our derivations of covariance, we assumed that a linearized model constitutes an adequate 

sufficient approximation of the dynamics of these systems and, hence, that contributions of 

higher moments beyond covariance are minor and can be ignored. To verify numerically when 

this approximation holds, we investigated how the addition of the second term (�	� =
−���� ��� �	����

������
���

�
��  ) to the downstream noise equation (Equation 5 below) impacted 

predictions in our method. We compared the equations with and without this added term in terms 
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of their ability to quantitatively predict dynamic noise values obtained from SSA simulations
2
. 

We quantified these contributions of higher moments as the difference of the noise values 

generated by the equations with and without the additional term, normalized by the total noise of 

B. We repeated this procedure for 70 randomly chosen parameter sets for both inhibitory and 

activation regulatory motifs. We found that the inclusion of the second moment changed the 

computed noise values only marginally (by less 2% and in most cases by less than 0.5% of total 

noise of B (Figure S6).  

Finally, we define noise of A (���� ), B (���� ), and of their shared noise (���� ), as the squared 

coefficients of variation: ���� = !""�
�� , ���� = !		��� , and ���� = !"	��� , respectively. These quantities are 

described by the following equations:  

 
������� = �

�� #
����� $ = −2����

���� + ����� + �����  (4) 

 
������� = �

�� #
����� $ = −2���� %���� −���∗ ���� ) + ����� + �����  (5) 

 
������� = �

�� #
����� $ = −���� '���� + ���� ( + ���� ���∗

����  (6) 

For the activation system, the resulting equations are: 

 
������� = −2����

��� + ���� + 
��  (7) 

 
������� = −2 ����

�%�� + )) #���� − *)
�� + ) ���� $ + ����

��%�� + )) + 
��  (8) 

 
������� = −���� #��� + ����

�%�� + ))$ + ����
����*)

�%�� + ))� (9) 

For inhibition system, the equations are: 
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������� = −2����

��� + ���� + 
��  (10) 

 
������� = −2 ���%�� + )) #���� + *��

�� + ) ���� $ + ����%�� + )) + 
��  (11) 

 
������� = −���� #��� + ���%�� + ))$ + ����

��*��
��%�� + ))� (12) 

For both activation and inhibition, the total noise of B can be decomposed into intrinsic and 

propagated components. For activation, the resulting propagated noise equations, which we used 

to infer regulatory relationships in networks, are: 

 
����+,+

�
�� = −2 ����

�%�� + )) #���-./
� − *)

�� + ) ���� $ (13) 

and for inhibition: 

 
����+,+

�
�� = −2 ���%�� + )) #���-./

� + *��
�� + ) ���� $ (14) 

 

Measuring propagated noise from in silico data 

Intrinsic and propagated noise sum up to the total noise: ���� = ���0
/
� + ���+,+

� ,
3-5

 we can, 

therefore, estimate the propagated component, ���+,+
� , from measurements of the total and 

intrinsic noise. We measure the total expression noise of a protein, B, as the squared coefficient 

of variation, ���� = !		��� , where � denotes the mean and ����  variance of the population.  For our 

model system, in which intrinsic noise stems just from the random birth and death events of 

individual proteins, intrinsic noise is defined as: ���0
/
� = 1

�.
3,4

  This can be verified numerically 

by replicating in silico the classical two-color experiment.
5
 Specifically, we used stochastic 

simulations
1
 of three node circuits in which one node regulates two identical downstream nodes, 
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A and B, and where the reaction propensities are as described in our models above. We obtained 

time-varying measurements of A and B's distributions and covariance, allowing us to compute 

their total and shared noise. For either node, measured intrinsic noise was defined as the 

uncorrelated (not shared) portion of the total noise.
5
 We compared the measured intrinsic noise 

of B to ���0
/
� = 1

�, as well as the dynamic equation of ���0
/
�  (as described in main text). For all 

parameter sets we tested,  ���0
/
� was well represented by 

1
� even under non-steady state conditions 

(Figure S7).  

 

Estimation of intrinsic noise in in vivo data 

In our experimental data, we assume intrinsic noise also scales with protein copy number and can 

be approximated by ���0
/
� = !

�, where C is a scalability constant similar for all genes in our 

networks.
6,7

 We do not have a direct measure of protein copy number but rather a proportional 

quantity, fluorophore intensity 2.
5
 Therefore, to compute intrinsic noise, we used ���0
/

� = !3
4 , 

where �4 is a fluorophore-specific scalability factor. We estimated �40 for each fluorophor, GFP 

and RFP, from experimental steady state data collected for a circuit in which the two reporters 

were driven by two copies of the pGAL1 promoter. Specifically, we estimated the scaling 

constants from the intrinsic noise equation: 
!3040 = �40

� − �4045
� , where �40

�  is the total noise of 

either GFP or RFP computed from measurements of their respective intensities, 26 and 27, and 

�4045
�  is the fluorophores' shared noise. Estimation of the fluorophore scaling constants was done 

at the same time as collection of all the other data to ensure identical calibration of the flow 

cytometer.  
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Determining the hill coefficient n  

Experimental data was collected over a time-course, allowing the system to go from one  steady 

state before the addition of an input to another steady-state after input addition. Measurements at 

the beginning and end of the time-course were used to compute n.   

For our models, the steady-state mean of B is: � = 	 �	�

8	%�
��) and � = 	 �	

8	%�
��) for activation and 

inhibition, respectively. We represent these expressions as a function of ���∗ . Specifically for 

activation: 

� = 	 ����

�%�� + )) 


��� � = 	 ��
�� + ) 

*
��� � = 	 *��
%�� + )) 

*
��� � = 		 *�� + *) − *)
%�� + ))  

*
��� � = 		 *%�� + ))
%�� + )) − *)

%�� + )) = * − *)
%�� + )) 

(15) 

Defining 9 = �8	
�	 , we obtain the relationship between susceptibility and the mean: 

 9� = * − ���∗  (16) 

Similarly for inhibition: 

 

� = 	 ��
�%�� + )) 

*
��� � = 	 *
�� + ) 

(17) 
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*
�)�� � = 	 *)
�� + ) 

*
�)�� � = 		 *) + *�� − *��
%�� + ))  

*
�)�� � = 		 *%�� + ))
%�� + )) − *��

%�� + )) = * − *��
%�� + )) 

If 9 = ��8	
�	 , 

 9� = * + ���∗  (18) 

These equations relating the mean and susceptibility have two unknown constants, n and 9, 

which can uniquely be identified from distribution information collected at the two different 

steady-states. 

If a second steady state is not available, we can obtain a rough estimate of n from a single 

measure of susceptibility taken in the dynamic range. The definition of susceptibility, which for 

our activation model is: ���∗ = ��
�
�� and for inhibition: ���∗ = ���


�
��, sets the lower bound on the 

value of n at ���∗  (since 
�

�
�� ≤ 1	&	 �

�
�� ≤ 1). This allows us obtain an estimate for * =

	=>		-./�
>"	� =. We can further constrain n by picking a value that guarantees a positive value for 

) = �
>		+,+�
�>"	� �>		+,+�  or ) = − �
?�>"	� �>		+,+� @

>		+,+�  for activation or inhibition, respectively. To further 

fine-tune the value of n, we can compute the mean square error of the fit of prediction made 

using these parameters to a set of steady-state measurements for ���∗ . We  can also repeat this 

procedure for multiple values of n and pick the value  one that minimizes the error of fit. We find 
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that in most cases, the estimate of * = 	 A>		+,+�
>"	� A using these approximations did not deviate from 

the value computed using two steady states by more than 1.  

 

Contribution of global noise  

Global noise affects expression of all components of a circuit and, hence, might cause 

independent genes to appear to be co-regulated. We investigated whether this is a confounding 

factor for our method. We modeled global noise as zero-mean stochastic signal
8
 with constant 

production, αε, and first order decay, γεε, rates. The chosen parameter values were such that 

αC 
DE = 150 for all tested noise levels. The resulting signals had standard deviation values of σ = 

[0, 6, 12, 24, 48, 84, 120]. 

The global noise term was added to synthesis terms (�H� ) of each gene, x. Each circuit was 

simulated and reconstructed for each of the seven noise levels. We found that presence of this 

global variability can affect reconstruction but that for circuit motifs, this occurs only at very 

large variance (Figure S8). 

 

Data sampling frequency 

We investigated how data sampling frequency impacts reconstruction. As a proof of concept we 

selected two regulatory motifs: A activates B and A and B are co-regulated, simulated each using 

50 randomly chosen parameter sets, and reconstructed using data sampled at different time 

intervals (Figure S9). As expected, we found that reconstruction remains robust as long as the 

sampling captures the dynamics of data. 
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List of primers used 

pGAL1_fwd: GGAA  GGGCCC TTCTCCTTGACGTTAAAGTATAGAGGT 

pGAL1_rev:  GGAA CTCGAG TTGGATGGACGCAAAGAAGT 

pADH1_fwd: GGAA GGGCCC GGCAACCAAACCCATACATC 

pADH1_rev: GGAA CTCGAG GTCGACCTGCAGAAAAAGAAACA 

pHSP12_fwd: GGAA  GGGCCC AGGTGGAGTGCGATTTGTTC 

pHSP12_rev: GGAA CTCGAG TTTTTGTTTTGAGTTGTTTGTTTGA 

Msn2_fwd: GGAA GTCGAC  AATAAA ATGACGGTCGACCATGATTT 

Msn2_rev: GGAA GCGGCCGC TGAAGGTACCGGAAAAATGG 

Venus_fwd:  GGAA ctcgag AATAAA atgtctaaaggtgaagaattat 

Venus_rev: GGAA AGATCT TTTGTACAATTCATCCATACC 

mKate_fwd: GGAA ctcgag AATAAA atggtgagcgagctgattaagg 

mKate_rev: ggaa ggtacc TTAtctgtgccccagtttgcta 

TetR_fwd: GGAA ctcgag AATAAA ATGTCTAGATTAGATAAAAG 

TetR_rev: ggaa ggtacc ggacccactttcacatttaag 

mCherry_fwd: GGAA GGATCC atgacagtcaacactaagacc 

mCherry_rev:ggaa GCGGCCGC TTATAATTGGCCAGTCTTTTTCAAA  
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Table 1. Parameter range 

Parameter Range 

αa (0, 250000] 

αb (0, 10
13

] 

γa, γb (0, 15] 

K (0, 10
6
] 

n (0, 5] 
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Figure S1. The dynamic noise equations accurately predict trajectories of noise for 

activation and inhibition motifs. Prediction accuracy was computed using 60 SSA simulations 

of activation and inhibition networks using different, randomly chosen parameter sets. (A) 

Change in mean expression of A and B between the pre-stimulus and post-stimulus steady-states 

for each of the 60 tested networks. (B) Prediction error between SSA and dynamic noise 

equations for total noise of A and B and of their shared noise. Prediction error was quantified as 

percent of total noise averaged over all time-points (251 or 501 time-points). (C) Error for the 

decomposed noise of B. Prediction error was quantified as percent of total noise averaged over 

all time-points (251 or 501 time-points) 
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Figure S2. Evaluation of the method in silico using data obtained from SSA. Reconstruction 

of regulatory motifs: A activates B, A inhibits B, co-regulation of A and B, a feedback loop in 

which A and B regulate each other, and an indirect regulation of B by A (hidden, unmeasured 

node in between). Data was obtained for 153 different, randomly chosen parameter sets. Choice 

of parameters for the feedback loop was restricted to those that assured that both A and B were 

susceptible to one another (Hab > 1.5 and Hba > 1.5). Each regulatory motif was tested for all 

regulatory permutations between A and B (rows). The results are reported as histograms of the 

correlation between measured and estimated noise for that particular topology. A low or negative 

correlation value for the correct topology indicates error in reconstruction. The zero correlation 

indicates that the numerical integrator failed to solve the noise equation. 
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Figure S3. Dissection of cases that could not be reconstructed with noise information. (A) In 

this case, B (αb = 1062, γb = 1.0, Kb = 41860, nb = 2) and its noise were insensitive to changes in 

concentration of the upstream protein A (αa = 452/2712, γa = 0.9) (left panel) and hence noise did 

not propagate (right panel). (B) In this case, the approximations inherent in the model were 

inadequate for both mean and noise, a problem that might be alleviated by inclusion of higher 

order terms to the mean and noise equations. (αa = 4/56, γa = 0.7, αb = 696, γb = 1.0, Kb = 9202, 

nb = 4) (C) In this case synthesis of B was fully inhibited by A which caused the noise of B to be 

dominated by degradation alone and no noise from A was propagated (αa = 24/384, γa = 2.0, αb = 

221968, γb = 2.0, Kb = 50, nb = 1). Insets in (A), (B) and (C): propagated noise and intrinsic noise 

in B expressed as a fraction of total noise. 
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Figure S4: The dynamic propagation of noise depends on parameter values. Each plot is the 

propagated (green) and shared (blue) noise of a downstream node of an inhibitory network 

versus time. Each trace shows noise trajectory for different parameter value for (A) Michaelis-

Menten parameter K, which is a key determinant of susceptibility, (B) degradation rate of the 

downstream protein, γb, which is a key determinant of time averaging (C) hill coefficient n, (D) 

synthesis rate of the downstream protein, αb, and (E) upstream rate of activation, αa. Red arrow 

indicates ascending parameter values.  
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Figure S5. Using in vivo data collected for synthetic circuits, mean alone was insufficient for 

distinguishing between the possible regulatory relationships. (A) Activation circuit. Plot of 

means for the topology A�B, B�A and A and B are co-regulated by an input function (gray 

line) versus time. (B) Inhibition circuit. Plot of means for the topology A--|B, B--|A and A and B 

are co-regulated versus time. (C) Co-regulation circuit. Plot of means for the topology A�B, 

B�A and A and B are co-regulated versus time.    
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Figure S6. Inclusion of higher moments in the dynamic noise equation does not 

substantially improve accuracy of predictions. Error incurred by not including higher 

moments is quantified as percent of total noise and plotted for each topology and parameter set 

tested. The values reported are averaged over the entire trajectory of the downstream protein.   
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Figure S7. In silico intrinsic noise for our models is well represented by the dynamic noise 

equation as well as the inverse of the mean (1/b) even at non-steady state. (A) An example 

trajectory of  intrinsic noise of protein B calculated by an in silico noise decomposition of SSA 

results (blue), the dynamic noise equation (green) or the relationship 1/b(t) (red) for a circuit in 

which A inhibits B, (αa = 574/2098, γa = 4.8, αb = 5.3259E7, γb = 4.0, Kb = 18606, nb = 2). Inset: 

mean behavior B. (B) Comparison of intrinsic noise to its measured value computed using all 

three methods for 40 different parameter sets.  
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Figure S8. Exploration of Global noise. Reconstruction of two regulatory motifs: A activates B 

and A and B are co-regulated. Each motif was simulated using 60 randomly chosen parameter 

sets and for seven different levels of global noise (left column). Each histogram reports on the 

obtained correlations between measured and estimated noise for a specific regulatory 

relationship (columns) and level of global noise (rows).  
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Figure S9. Dependence on sampling frequency. Reconstruction of two in silico regulatory 

motifs: A activates B and A and B are co-regulated, using data sampled at different time interval 

(left column) – from top: using all 501 time points, using every 5th, 10th, 54th, and 100th time 

point. Each histogram shows reconstruction of these motifs for 50 randomly chosen parameter 

sets. 


