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We assume our discrete-time model is correct and so - because we use exact likelihood - our
estimates are consistent and fully efficient given the data we have chosen to use, ie survival
times coarsened at random through artificial interval censoring. Hence at issue is loss of
efficiency only. A full efficiency analysis will be model (or model class) specific and almost
certainly intractable for joint models with random effects. However, we can make useful
progress if we consider a) a survival analysis only, or b) the additional information that
within-interval information provides on the random effects that link the longitudinal and
survival parts.

1 Survival Analysis

Let T be the continuous event time. Assume Type 1 censoring at a maximum follow-up
time τ . Extension to additional random censoring is feasible but not central to discussion of
efficiency. The follow-up interval (0, τ ] is partitioned into m disjoint intervals, with boundaries
0 = t0 < t1 < t2 < . . . < tm = τ . Let S denote the interval within which T falls, with S = m+1
if T is censored at τ . Define W = (T−ts−1)/(ts−ts−1), which is the within-interval information
on a (0,1) scale. Note that there is a one-to-one correspondence between T and (S,W ). We
will investigate the loss of efficiency caused by ignoring W .

The sequential probit model in (1) of the main paper is assumed for event probabilities within
each interval j, for j = 1, 2, . . . ,m, with time-constant covariates and covariate effects, but
possibly time-varying intercepts:

P (S > j|S > (j − 1), x̃) = Φ
(
β̃0j + x̃T β̃

)
.
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In the numerical work later, we take scalar binary x̃, fix P (S = (m + 1)|x̃ = 0) and assume
equal failure probabilities within each interval at x̃ = 0. We then either fix β̃ or fix P (S =
(m + 1)|x̃ = 1) and again assume equal failure probabilities for each interval at x̃ = 1. As
m varies we cannot have both of these options: with fixed β̃ then P (S = (m+ 1)|x̃) changes
with m; with fixed P (S = (m+ 1)|x̃) then β̃ must change with m in our set-up.

We assume for simplicity that the conditional within-interval distribution of event times is the
same for all intervals. Let the corresponding probability density function be h(w|x̃), which
will usually depend on β̃ (and perhaps other parameters). Information on β̃ from the within-
interval distribution of event times provides the extra efficiency for the complete data (not
coarsened) analysis.

1.1 Likelihood analysis with coarsening

Assume a generic subject either has an event in interval s, for s = 1, 2, . . . ,m, or is censored
at τ , in which case we set s = m + 1. Let δ be an indicator of event (δ = 1) or censoring
(δ = 0).

The likelihood contribution is

LC =

(
s−1∏
j=1

Φ
(
β̃0j + x̃T β̃

))(
1− Φ

(
β̃0s + x̃T β̃

))δ
.

The log-likelihood is

`C =

(
s−1∑
j=1

log(Φ
(
β̃0j + x̃T β̃

)
)

)
+ δ log

(
1− Φ

(
β̃0s + x̃T β̃

))
.

For j = 1, 2, . . . ,m:

∂`C

∂β̃0j
= I(s > j)

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

) − I(s = j)
φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

) ,
remembering that we have assumed no censoring before τ so that if s < m+ 1 then an event
must have occurred. Also

∂`C

∂β̃
=

 s−1∑
j=1

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)
− δ φ

(
β̃0s + x̃T β̃

)
1− Φ

(
β̃0s + x̃T β̃

)
× x̃,
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∂2`C

∂β̃2
0j

= −I(s > j)
φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ +

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)


+I(s = j)
φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ −

φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
 ,

∂2`C

∂β̃0j∂β̃0k
= 0 j 6= k,

∂2`C

∂β̃∂β̃T
=

− s−1∑
j=1

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ +

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)


+δ
φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ −

φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
× x̃x̃T .

And finally

∂2`C

∂β̃0j∂β̃
=

−I(s > j)
φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ +

φ
(
β̃0j + x̃T β̃

)
Φ
(
β̃0j + x̃T β̃

)


+I(s = j)
φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
β̃0j + x̃T β̃ −

φ
(
β̃0j + x̃T β̃

)
1− Φ

(
β̃0j + x̃T β̃

)
× x̃.

We can use the second derivatives together with the known distribution of discrete event
times to obtain the asymptotic expected information (and variance matrix) under coarsening
at random.

1.2 Distribution of W

First we note that a simple approach would be to interpolate:

P (T > t|x̃) =

(
k−1∏
j=1

Φ
(
β̃0j + x̃T β̃

))( tk − t
tk − tk−1

+
t− tk−1
tk − tk−1

Φ
(
β̃0k + x̃T β̃

))
for tk−1 < t ≤ tk.
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The associated density is:

f(t|x̃) =

(
k−1∏
j=1

Φ
(
β̃0j + x̃T β̃

)) 1− Φ
(
β̃0k + x̃T β̃

)
tk − tk−1

,

again for tk−1 < t ≤ tk. Hence conditional on failing in interval k

f(t|x̃, S = k) =
f(t|x̃)

P (S > tk−1|x̃)− P (S > tk|x̃)
=

1

tk − tk−1
,

and there is no information in the within-interval value of the event time T . In this case
our coarsened at random analysis is fully efficient. Thus if we discretise so that the survival
distributions are (approximately) linear then our discrete-time analysis is (almost) efficient.

To investigate the effect of coarsening there must be an effect of x̃T β̃ on the distribution of
the within-interval value W . As stated, we will assume that W has the same distribution
within all discrete intervals, with density h(w|x̃). Note that we can always transform so that
h(w|x̃ = 0) is the U(0,1) density.

We now need to introduce non-uniform distributions for other x̃. We assume

h(w|x̃) =
rψ

(1− (1− ψ)r)
(ψw + 1− ψ)r−1 ,

where r = r(x̃T β̃) = exp(x̃T β̃) and 0 < ψ < 1. This is the within-interval distribution that
arises if a Weibull distribution is discretised (Appendix). Note that high x̃T β̃ is associated
with high discrete-time survival and we have kept the same ordering within intervals: if r > 1
then high values of W are more likely, the opposite for r < 1.

As required the density is uniform at x̃T β̃ = 0, and also at ψ = 0. We will use curvature

c(x̃) =

∫ 1

0

(h′(w|x̃))
2
dw

as a measure of non-uniformity. For the chosen h(w|x̃) we can show that

c(x̃) =


r2(r−1)2ψ3

2r−3

[
1−(1−ψ)2r−3

(1−(1−ψ)r)2

]
r 6= 3/2,

− 9
16

ψ3

(1−(1−ψ)3/2)2 log(1− ψ) r = 3/2.

Some calibration is provided by specimen values of c(x̃) given in the Appendix for discretised
Weibull distributions. Values around 2 are quite extreme.
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1.3 Likelihood analysis without coarsening

Since we only allow censoring at the final point τ , the additional log-likelihood, score and
information contributions associated with W are

`W = I(s ≤ m) [log(r) + log(ψ)− log (1− (1− ψ)r) + (r − 1) log (wψ + 1− ψ)] ,

∂`W

∂β̃
= −I(s ≤ m)

[
1

r
+

(1− ψ)r log(1− ψ)

(1− (1− ψ)r)
+ log (wψ + 1− ψ)

]
× x̃r,

and

∂2`W

∂β̃∂β̃T
= I(s ≤ m)

[
(1− ψ)r log(1− ψ)

(1− (1− ψ)r)
+ log (wψ + 1− ψ)

r(1− ψ)r(log(1− ψ))2

(1− (1− ψ)r)
+
r ((1− ψ)r log(1− ψ))2

(1− (1− ψ)r)2

]
× x̃x̃T r.

For the expected information we need

E[log (Wψ + 1− ψ)] =
1

r(1− (1− ψ)r)
[(1− ψ)r {1− r log(1− ψ)} − 1]

1.4 Example

Table 1 provides examples of the efficiency of the coarsened at random analysis compared
with the complete-data analysis. For this example we took a single binary covariate and set
S(τ |x̃ = 0) = 0.7 and β̃ = −1. Since β̃ is fixed, changing m changes S(t|x̃ = 1). The final row
in the table gives S(τ |x̃ = 1) for each m.

Survival curves at ψ = 0.9 are shown in Figure 1. Recall that the distribution of W has to
differ between x̃ = 0 and x̃ = 1 if the coarsening is to lose any information. For calibration,
it is useful to look at the Weibull results in the Appendix. The curvature at ψ = 0.9 is higher
than anything seen for the Weibull discretisations. And we assume that applies within all
intervals and so Figure 1 corresponds to a rather extreme example. Even so, there is little loss
of efficiency when we ignore the within-interval information. In all simulation scenarios the
efficiency was more than 90%, and was more than 97% in more realistic cases. We obtained
similar results for other β̃, and when we fixed S(t|x̃ = 1) and allowed β̃ to vary with m.
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ψ c(x̃) m = 3 m = 5 m = 7 m = 9
0.9 9.75 0.919 0.930 0.936 0.939
0.8 2.28 0.958 0.964 0.967 0.969
0.7 0.91 0.976 0.979 0.981 0.982
0.6 0.44 0.986 0.988 0.989 0.990
0.5 0.22 0.992 0.993 0.994 0.994
0.4 0.11 0.996 0.996 0.997 0.997
0.3 0.05 0.998 0.998 0.998 0.998
0.2 0.02 0.999 0.999 0.999 0.999
0.1 0.00 1.000 1.000 1.000 1.000

S(τ |x̃ = 1) 0.201 0.152 0.123 0.104

Table 1: Efficiency of coarsened at random analysis compared with complete-data analysis.
Values in the main block are the ratios of asymptotic variance estimators for β̃ without and
with W .
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Figure 1: Example survival curves at S(τ |x̃ = 0) = 0.7, β̃ = −1 (so S(τ |x̃ = 1) ' 0.2)
and ψ = 0.9. Circles are fixed by the discrete time model, and the lines between by the
within-interval model. The upper curve has x̃ = 0 and the lower has x̃ = 1.
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2 Random Effects

We now turn to joint modelling and introduce a random effect U . The key comparison is
between f(U |S,W ) and f(U |S), where S is the discretised survival time.

We will consider a generic subject with scalar U . Because we are not now considering esti-
mation, without loss we exclude covariates (or equivalently assume covariate effects are incor-
porated in other parameters). We will adapt the model considered so far, with the following
additional assumptions.

1. U ∼ N(0, σ2).

2. Conditional on U , S has our sequential probit discrete distribution

fS|U(s|u) =

(
s−1∏
j=1

Φ
(
β̃0j + u

))(
1− Φ

(
β̃0s + u

))δ
.

Note that high U is associated with high S.

3. Also conditional on U

fW |U(w|u) =
rψ

(1− (1− ψ)r)
(ψw + 1− ψ)r−1

where r = exp(u), so high U is associated with high W . Note that (W |U = 0) ∼ U(0, 1).

4. S and W are conditionally independent given U .

To illustrate, we again take m equally probable intervals to a maximum survival time of τ .
We take S(τ |U = 0) = 0.5. To calibrate σ2, consider m = 3.

σ S(τ |U = −σ) S(τ |U = −σ)
0.25 0.37 0.63
0.50 0.24 0.74
0.75 0.15 0.84
1.00 0.08 0.90

Since Φ(−1) = 1 − Φ(1) ' 0.16, the above shows that at eg σ = 0.5 about 16% of people
will have survival probabilities to τ of 0.24 or less, and 16% will have survival probabilities
of 0.74 or greater. For large σ the distribution of S(τ |U) becomes ever more concentrated at
the boundaries. Choosing σ = 0.5 gives a strong but not unrealistically extreme distribution.
Hence we set σ = 0.5 in the following.

Figure 2 illustrates for m = 3, S(τ |U = 0) = 0.5, ψ = 0.9 and σ = 0.5. Each subplot shows
the marginal of U , the conditional given S, and the conditionals also given either low W or
high W . The different subplots correspond to the four possible values of S. As expected, the
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Figure 2: Distribution of random effect U : marginal, fU(u) (black line); given S = s,
fU |S(u|S = s) (blue); and given S = s and W = 0.1 or W = 0.9, fU |S,W (u|S = s,W = 0.1) (left
red line) and fU |S,W (u|S = s,W = 0.9) (right red line). Parameters m = 3, S(τ |U = 0) = 0.5,
ψ = 0.9 and σ = 0.5.
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E[Var(U |S)]/Var(U)
m = 3 m = 5 m = 7 m = 9

0.82 0.78 0.76 0.75

E[Var(U |S,W )]/E[Var(U |S)]
ψ m = 3 m = 5 m = 7 m = 9

0.9 0.94 0.94 0.94 0.94
0.8 0.96 0.96 0.96 0.96
0.7 0.97 0.97 0.97 0.98
0.6 0.98 0.98 0.98 0.98
0.5 0.99 0.99 0.99 0.99
0.4 0.99 1.00 0.99 0.99
0.3 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00

Table 2: Ratios of posterior variances

distribution shifts to the left on conditioning on low S, and to the left (right) on additional
conditioning on low (high) W . The changes are all rather modest however, even at this quite
extreme value of ψ. Similar plots (not shown) were obtained for other values of m.

Table 2 compares posterior variances of the random effect given either S or (S,W ). First we
draw U from the marginal distribution, then we draw S and W from the appropriate condi-
tionals given U . We calculate the variances of the distributions fU |S(u|S) and fU |S,W (u|S,W )
and then average over the original U . Results are based on 5000 Monte Carlo simulations of
U , S and W , with numerical integration for the posterior expectations. There is up to a 25
% reduction in variance once S is available, but further gain from W is less than 6%.

Finally Table 3 illustrates mean square prediction error (MSPE). The procedure is similar
to that just used, but instead of variances we take mean square error between the posterior
means of fU |S(u|S) or fU |S,W (u|S,W ) and the value of U used to generate S and W , again with
averaging over U . In the absence of conditioning the MSPE is just Var(U) = σ2. The tables
again look at ratios. Conclusions are unchanged: there is very little additional information in
the within-interval value W , with reductions of only 6% even in some quite extreme situations.
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E[(E[U |S]− U)2]/Var(U)
m = 3 m = 5 m = 7 m = 9

0.41 0.39 0.38 0.38

E[(E[U |S,W ]− U)2]/E[(E[U |S]− U)2]
ψ m = 3 m = 5 m = 7 m = 9

0.9 0.94 0.94 0.94 0.94
0.8 0.96 0.96 0.97 0.96
0.7 0.97 0.97 0.97 0.97
0.6 0.99 0.99 0.99 0.98
0.5 0.99 0.99 0.99 0.99
0.4 0.99 0.99 1.00 0.99
0.3 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00

Table 3: Ratios of mean square prediction errors
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Appendix: Partitioning a Weibull distribution

Consider Weibull survival T with a binary covariate and shape parameter ζ. We will choose
rates by fixing p0 = S(τ |x̃ = 0) and p1 = S(τ |x̃ = 1). Hence we choose θ0 and θ1 such that

e−θ0τ
ζ

= p0, e−θ1τ
ζ

= p1,

ie
θ0 = − log(p0)/τ

ζ , θ1 = − log(p1).

We partition (0, τ) into m intervals of equal length with boundaries 0 = t0 < t1 < t2 < . . . <
tm = τ and call the intervals I1, I2, . . . , Im. Consider interval Ik. Let

∆k0 = e−θ0t
ζ
k − e−θ0t

ζ
k+1 and ∆k1 = e−θ1t

ζ
k − e−θ1t

ζ
k+1 .

The conditional densities, given T is in Ik, are

f(t|x̃ = 0, Ik) =
θ0ζt

ζ−1e−θ0t
ζ

∆k0

, f(t|x̃ = 1) =
θ1ζt

ζ−1e−θ1t
ζ

∆k1

.

The conditional survival distribution in the baseline group is

S(t|x̃ = 0, Ik) =
{
e−θ0t

ζ − e−θ0t
ζ
k+1

}
/∆k0.

Now define
W =

{
e−θ0T

ζ − e−θ0t
ζ
k+1

}
/∆k0 =

{
e−θ0T

ζ − Ak0
}
/∆k0, say.

Hence, using the probability integral transform, in the x̃ = 0 group

h(w|x̃ = 0, Ik) = 1.

The inverse transformation is

T =

(
− 1

θ0
log(∆k0W + Ak0)

)1/ζ

and so

h(w|x̃ = 1, Ik) =
θ1ζ

∆k1

(
− 1

θ0
log(∆k0w + Ak0)

)(1−1/ζ)

(∆k0w + Ak0)
θ1/θ0

×(∆k0)

ζθ0

(
− 1

θ0
log(∆k0w + Ak0)

)(−1+1/ζ)

(∆k0w + Ak0)
−1

=
θ1∆k0

θ0∆k1

(∆k0w + Ak0)
−1+θ1/θ0 .
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For the curvature we need

h′(w|x̃ = 1, Ik) = ∆k0

(
θ1
θ0
− 1

)
θ1∆k0

θ0∆k1

(∆k0w + Ak0)
−2+θ1/θ0 = Bk (∆k0w + Ak0)

−2+θ1/θ0 ,

say. And so

∫ 1

0

(h′(w|x̃ = 1, Ik))
2
dw =

B2
k

∆k0 (2θ1/θ0 − 3)

[
(∆k0 + Ak0)

−3+2θ1/θ0 − A−3+2θ1/θ0
k0

]
.

Tables 4 and 5 show the mean and maximum curvature values over the m intervals for Weibull
distributions chosen such that S(τ |x̃ = 0) = 0.7 and S(τ |x̃ = 1) = 0.2 (which are the same as
in Figure 1), and for various ζ and m. Larger curvature values can occur for other parameter
choices, though for any set up that we believe can be considered realistic the curvature is
always less than about three, and often substantially lower.

Note that h(w|x̃) is always of the form

h(w|x̃) =
r(a1 − a2)r

(ar1 − ar2)

(
w +

a2
a1 − a2

)r−1
,

where
r = θ1/θ0, a1 = e−θ0t

ζ
k , a2 = e−θ0t

ζ
k+1 .

If we set ψ = 1− a2/a1 then these are all of the form

h(w|x̃) =
rψ

(1− (1− ψ)r)
(ψw + 1− ψ)r−1 .

This is the distribution chosen for our efficiency analysis.
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Shape ζ
0.333 0.5 0.75 1 1.5 3

m = 2 0.525 0.458 0.405 0.392 0.425 0.609
3 0.276 0.221 0.183 0.174 0.193 0.294
4 0.174 0.132 0.104 0.098 0.109 0.170
5 0.122 0.088 0.067 0.063 0.070 0.110
6 0.091 0.063 0.047 0.044 0.049 0.077
7 0.071 0.047 0.034 0.032 0.036 0.057
8 0.057 0.037 0.026 0.025 0.027 0.044
9 0.047 0.030 0.021 0.019 0.022 0.035

10 0.040 0.025 0.017 0.016 0.018 0.028

Table 4: Mean curvatures

Shape ζ
0.333 0.5 0.75 1 1.5 3

m = 2 0.983 0.781 0.553 0.392 0.653 1.193
3 0.751 0.522 0.302 0.174 0.325 0.774
4 0.621 0.392 0.196 0.098 0.193 0.523
5 0.535 0.313 0.140 0.063 0.127 0.373
6 0.474 0.261 0.107 0.044 0.090 0.278
7 0.428 0.224 0.085 0.032 0.067 0.215
8 0.392 0.196 0.069 0.025 0.052 0.171
9 0.362 0.174 0.058 0.019 0.041 0.139

10 0.338 0.157 0.050 0.016 0.034 0.115

Table 5: Maximum curvatures
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