Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: an identification of a novel oncotarget

## **Supplementary Information**

## **Table of Contents**

- 1. Supplemental Materials and Methods (p.2)
  - 1) In-gel digestion of protein samples
  - 2) Co-immunoprecipitation.
- 2. Supplemental Table 1 (p. 2)

 $IC_{50}$  values for Growth inhibition of biotinylated tylophorine (Compound 5) against HONE-1, MCF7, and NUGC-3 carcinoma cells.

3. Supplemental Table 2 (p. 3)

Summary of the identified proteins that interacted with the biotinylated tylophorine via the pull-down experiments by MOALDI-TOF-MS and their scores analyzed by Mascot.

- **4. Supplemental Table 3 (p. 4)** Gene primer pairs used for PCR.
- **5.** Supplemental Table 4 (p. 5) STR profile of HONE-1 cells.
- 6. Supplemental Table 5 (p. 6) Antibodies used for western blots.
- **7. Supplemental Figure 1 (p.7)** Stress granules were not induced in carcinoma cells after tylophorine treatment.
- Supplemental Figure 2 (p. 10) Tylophorine treatment significantly decreased the PTEN protein levels in HONE-1, NUGC-3, and MCF7 carcinoma cells.
- **9.** Supplemental Figure 3 (p. 10) Ectopically overexpressed c-Myc did not affect the c-Jun accumulation by tylophorine.
- **10. Supplemental Figure 4 (p. 11)** <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of BT.

## 1. Supplemental Materials and Methods

**In-gel digestion of protein samples.** The gel pieces were washed with ddH<sub>2</sub>O and destained in 30 mM potassium ferricyanide (Sigma-Aldrich) and 100 mM sodium thiosulfate (Sigma-Aldrich) for 20 min until they became colorless. Disulfide bonds were reduced by treatment with 10 mM dithiothreitol (DTT, Amersham Biosciences) in 100 mM ammonium bicarbonate (JT Baker) for 1 h at 56°C. Iodoacetamide (Sigma-Aldrich) was then used to alkylate the cysteine residues. The samples were diluted with 50 mM ammonium bicarbonate, dehydrated with acetonitrile (ACN, Echo Chemical), and subjected to 0.001% trypsin (Biological Industries) digestion overnight at 37°C. The next day, the peptide samples were acidified with 5% formic acid (Acros Organics), and analyzed by LC/MS/MS using a Thermo Scientific LTQ XL mass spectrometer (Thermo Scientific).

**Co-immunoprecipitation.** HONE-1 cell lysates (1500  $\mu$ g) were incubated with 4  $\mu$ g of anti-caprin-1 antibody (ProteinTech Group) or GAR (Perkin-Elmer) in PBS containing 10  $\mu$ M biotinylated tylophorine at 4°C for 4 h with constant agitation. The lysates were then incubated with washed protein G agarose (Millipore) at 4°C for 1.5 h. The beads were washed 5 times with PBS. Caprin-1-bound proteins were then eluted with Laemmli buffer, analyzed by 10% SDS-PAGE, and subjected to western immunoblot analysis.

**2.** Supplemental Table 1. IC<sub>50</sub> values for Growth inhibition of biotinylated tylophorine (Compound 5) against HONE-1, MCF7, and NUGC-3 carcinoma cells.

|                             | IC₅₀ (μM) |          |          |  |
|-----------------------------|-----------|----------|----------|--|
| Compound                    | HONE-1    | MCF7     | NUGC-3   |  |
| Biotinylated<br>tylophorine | 30.3±8.5  | 13.0±4.4 | 18.7±5.8 |  |

**3. Supplemental Table 2.** Summary of the identified proteins that interacted with the biotinylated tylophorine via the pull-down experiments by MOALDI-TOF-MS and their scores analyzed by Mascot.

| Band<br>no. | identified protein                                        | Masco<br>score |
|-------------|-----------------------------------------------------------|----------------|
| 1           | α-actinin-4                                               | 502            |
|             | nucleolin                                                 | 421            |
|             | caprin-1 isoform 1                                        | 371            |
|             | splicing factor, proline- and glutamine-rich              | 365            |
|             | nucleolar RNA helicase 2                                  | 132            |
|             | LIM domain and actin-binding protein 1 isoform b          | 117            |
|             | heterogeneous nuclear ribonucleoprotein U isoform a       | 97             |
| 2           | polyadenylate-binding protein 1                           | 212            |
|             | heterogeneous nuclear ribonucleoprotein M isoform a       | 201            |
|             | ATP-dependent RNA helicase DDX3X isoform 1                | 174            |
|             | stress-70 protein, mitochondrial precursor                | 132            |
|             | TATA-binding protein-associated factor 2N isoform 1       | 92             |
|             | heterogeneous nuclear ribonucleoprotein Q isoform 1       | 83             |
| 3           | heterogeneous nuclear ribonucleoprotein K                 | 267            |
|             | ras GTPase-activating protein-binding protein 1           | 182            |
|             | prelamin-A/C isoform 1 precursor                          | 154            |
| 4           | 40S ribosomal protein S3a                                 | 322            |
|             | heterogeneous nuclear ribonucleoprotein A1 isoform b      | 304            |
|             | 40S ribosomal protein S3                                  | 193            |
|             | heterogeneous nuclear ribonucleoproteins A2/B1 isoform B1 | 115            |
|             | 40S ribosomal protein S6                                  | 63             |
| 5           | 40S ribosomal protein S18                                 | 202            |
|             | 60S ribosomal protein L28 isoform 2                       | 195            |
|             | 40S ribosomal protein S15                                 | 191            |
|             | 40S ribosomal protein S17                                 | 144            |
| 6           | 40S ribosomal protein S14                                 | 297            |
|             | 40S ribosomal protein S18                                 | 163            |
|             | 40S ribosomal protein S25                                 | 139            |
|             | 60S ribosomal protein L35                                 | 110            |
|             | 60S acidic ribosomal protein P1 isoform 1                 | 108            |
|             | 60S ribosomal protein L31 isoform 1                       | 104            |
|             | 60S ribosomal protein L22 proprotein                      | 102            |

| 4. | <b>Supplemental</b> | Table 3. | Gene | primer | pairs | used | for l | PCR. |
|----|---------------------|----------|------|--------|-------|------|-------|------|
|----|---------------------|----------|------|--------|-------|------|-------|------|

| Gene Name | Direction | Sequence                 |
|-----------|-----------|--------------------------|
| 18S       | Forward   | GTGGAGCGATTTGTCTGGTT     |
|           | Reverse   | CGCTGAGCCAGTCAGTGTAG     |
| 28S       | Forward   | TGGGTTTTAAGCAGGAGGTG     |
|           | Reverse   | AACCTGTCTCACGACGGTCT     |
| Cyclin A2 | Forward   | AGCAGCAGAGGCCGAAGAC      |
|           | Reverse   | ATTAAAAGCCAGGGCATCTTCA   |
| Cyclin B1 | Forward   | GGCTTTCTCTGATGTAATTCTTGC |
|           | Reverse   | GTATTTTGGTCTGACTGCTTGC   |
| Cyclin D1 | Forward   | GGTCTGCGCGTGTTTGC        |
|           | Reverse   | CCCTGACGGCCGAGAAG        |
| Cyclin D2 | Forward   | GATGATCGCAACTGGAAGTG     |
|           | Reverse   | AGAGACCAGATTATGGACGC     |
| c-Myc     | Forward   | CCAGAGGAGGAACGAGCTAA     |
|           | Reverse   | AGCCAAGGTTGTGAGGTTGC     |
| GADD45A   | Forward   | AACGGTGATGGCATCTGAAT     |
|           | Reverse   | CCCTTGGCATCAGTTTCTGT     |
| POLR3G    | Forward   | TTCTCTGCCATCACCCTTTC     |
|           | Reverse   | TATTCCCAGCCATCAGAACC     |
| PRDX3     | Forward   | CCAGTTCCTCATGCCATGC      |
|           | Reverse   | TTGACAACGGCTGTACCCTTAA   |
| SERBP1    | Forward   | CTATTCGAGGTCGTGGTGGT     |
|           | Reverse   | GCCACGAGAATCAAATCCAT     |
| THBS1     | Forward   | CGGTCCAGACACGGACCTGC     |
|           | Reverse   | GGCTTTGGTCTCCCGCGCTT     |
| GAPDH     | (RT-PCR)  |                          |
|           | Forward   | TACTAGCGGTTTTACGGGCG     |
|           | Reverse   | TCGAACAGGAGGAGCAGAGAGCGA |
|           | (RT-qPCR) |                          |
|           | Forward   | CGCTCTCTGCTCCTCCTGTT     |
|           | Reverse   | CCATGGTGTCTGAGCGATGT     |

| Locus      | HONE-1  |
|------------|---------|
| D8S1179    | 12      |
| D21S11     | 27,30   |
| D7S820     | 10,12   |
| CSF1PO     | 10,11   |
| D3S1358    | 15,18   |
| TH01       | 6,7,9   |
| D13S317    | 10,12   |
| D16S539    | 9,10,11 |
| D2S1338    | 17,23   |
| D19S433    | 13      |
| vWA        | 14,16   |
| ТРОХ       | 8,12    |
| D18S51     | 13,16   |
| Amelogenin | Х       |
| D5S818     | 11,12   |
| FGA        | 18,21   |

5. Supplemental Table 4. STR profile of HONE-1 cells.

| Manufactory               | Antibody           |
|---------------------------|--------------------|
| Abcam                     | a-actinin-4        |
|                           | CD82               |
|                           | DCP1a              |
|                           | glutaminase (GLS1) |
|                           | hnRNP M3-M4        |
|                           | nucleolin          |
|                           | PABP               |
|                           | TAF15              |
|                           | a-tubulin          |
| Biosource                 | PTEN               |
| Cell Signaling Technology | c-Jun              |
|                           | cyclin B1          |
|                           | cyclin D1          |
|                           | cyclin D2          |
|                           | GAPDH              |
|                           | LDHA               |
|                           | p-pRB (S780)       |
|                           | S3                 |
|                           | S6                 |
|                           | p-S6 (S235/236)    |
| ProteinTech Group         | caprin-1           |
| Santa Cruz Biotechnology  | cyclin A2          |
|                           | с-Мус              |
|                           | G3BP1              |
|                           | eIF4E              |
|                           | hnRNP Q            |
| Sigma-Aldrich             | PSF                |

6. Supplemental Table 5. Antibodies used for western blots.

7. Supplemental Figure 1. Stress granules were not induced in carcinoma cells after tylophorine treatment. NUGC-3 (A), HONE-1 (B) and HeLa (C) cells were treated with DMSO, 500 μM arsenite, or 2 μM tylophorine for 1.5 h and 24 h. Stress granules assembly were detected by staining with anti-G3BP1-TRITC and PABP-FITC and captured with Leica TSC SP5 laser-scanning confocal microscope. The merged image includes DAPI-stained nuclei. DAPI was used for nuclear counterstaining. The total cell number and stress granules were counted with Image-J software (National Institutes of Health) (D). The results shown are representative of 3 independent experiments.







С



| DMSO tylophorine arsenite DMSO tylopho   NUGC-3 222 (3)* 174 (8) 330 (1426) 356 (39) 220 (1   HONE-1 161 (5) 162 (8) 152 (1227) 218 (47) 160 (4 |        | 1.5 h    |             |            | 24 h     |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------------|------------|----------|-------------|--|
| NUGC-3 222 (3)* 174 (8) 330 (1426) 356 (39) 220 (1   HONE-1 161 (5) 162 (8) 152 (1227) 218 (47) 160 (4                                          |        | DMSO     | tylophorine | arsenite   | DMSO     | tylophorine |  |
| <b>HONE-1</b> 161 (5) 162 (8) 152 (1227) 218 (47) 160 (4                                                                                        | NUGC-3 | 222 (3)* | 174 (8)     | 330 (1426) | 356(39)  | 220(11)     |  |
|                                                                                                                                                 | HONE-1 | 161(5)   | 162 (8)     | 152 (1227) | 218 (47) | 160 (44)    |  |
| <b>Hela</b> 195 (20) 176 (28) 213 (1400) 229(17) 201(5                                                                                          | Hela   | 195 (20) | 176 (28)    | 213 (1400) | 229(17)  | 201(52)     |  |

\* total stress granules number present (total cell number counted)

8. Supplemental Figure 2. Tylophorine treatment significantly decreased the PTEN protein levels in HONE-1, NUGC-3, and MCF7 carcinoma cells. Cells were treated with vehicle DMSO or tylophorine for 24 h. The resultant cell lysates were analyzed by western blotting with the antibodies indicated. The results shown are representative of 3 independent experiments.



**9.** Supplemental Figure 3. Ectopically overexpressed c-Myc did not affect the c-Jun accumulation by tylophorine. HONE-1 cells were transfected with expression vectors indicated for 24 h prior to vehicle DMSO or tylophorine treatment as indicated concentrations for another 24 h. The resultant cell lysates were analyzed by western blotting with the antibodies indicated. The results shown are representative of 3 independent experiments.



**10. Supplemental Figure 4.** <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of biotinylated tylophorine (BT).

<sup>1</sup>H-NMR spectrum



## <sup>13</sup>C-NMR spectrum



12