
Supporting Information
Angel et al. 10.1073/pnas.1503100112
SI Text

Full Model
To simulate in detail the transfer of nucleation to cis-acting si-
lencing memory via histone modifications, we used a slightly
modified version of the model previously applied to the vernal-
ization system (1). The core of the model is nearly identical to
that presented in ref. 1. Our original parameterization was used
as a starting point for our fitting, with many parameters re-
maining unchanged; details are in Table S1. We provide an ad-
ditional description of the simulation here for clarity and ease of
reproduction and refer the reader to the main text for a de-
scription with greater detail.
The core model of histone-based epigenetic memory is cen-

tered on the assumption that there are twomain types of opposing
histone modification that activate or silence the system, called M
(for H3K27me3, a silencing modification) and A (for an activating
modification). In addition to this, there is a U state (for unmodified)
that describes the absence of both modifications on a particular
histone. The system is modeled as a stochastic process where events
are given specific probabilities per unit time of occurring. The
central mechanism that allows for stable epigenetic memory is long-
range cooperative positive feedback. The M modifications tend to
recruit more M modifications and remove A modifications; simi-
larly, the A modifications tend to recruit more A modifications
and remove M modifications. Moreover, the recruitment/removal
processes can occur between two histones that are spatially far apart
through, for example, gene looping. With this core mechanism in
place the system is capable of maintaining itself in a state in which
a clear majority of histones have the Amodification, giving an active
locus, or the M modification, giving a silenced locus.
This study focuses on the way that the system switches from an

activated to a silenced state. This switch can be triggered by the
nucleation of a given histone modification in a localized region of
the FLC gene—referred to as the nucleation region. A small bias
in one direction is also added postcold to help the nucleated
signal enforce a switch of states. This is motivated biologically by
a postcold increase in the activity of the enzymes that add
M modifications and remove A modifications, for example, via
the transient activity of the plant homeodomain (PHD) protein
VRN5. Neither of the processes of nucleation and bias on their
own are enough to cause switching within a short period, but the
combination of the two is very effective at causing a switch be-
tween active and silenced states. The persistence of nucleation
and bias is modeled as limited duration events in the warm pe-
riod directly following cold exposure.
The system comprises L= 70 modifiable histones (the equiv-

alent of 35 nucleosomes, with 2 copies of the histone able to
accept the relevant modifications per nucleosome). The histones
themselves are divided into those that are in the nucleation re-
gion, taken to be 5 histones in extent (1), and those that are
outside (the body region), with different rules for each. As
mentioned above, we impose long-range interactions such that
any histone can communicate equally efficiently with any other
within the locus. Hence, other than the distinction between the
nucleation and body regions, the actual position of the nucle-
ation region at FLC is unimportant. Time is divided into steps
equivalent to 15 s in real time, so that there are 5,760 time steps
in a single day. Certain parameters take different values at dif-
ferent times during the simulation to model the effect of, for
example, different temperatures—in the bulleted list below,

these are denoted by subscripts of the appropriate parameters
and are detailed in Table S1.
In each time step, there are a number of updates equal to the

number of histones. In each update, a histone is chosen at ran-
dom. Probabilities are assigned to each possible event, dependent
on the state of the system at a given time. A random number is
then generated and used to select an event with a likelihood
proportional to its probability.
For histones outside the nucleation region, where NM is the

total number of histones in the M state and NA is the number
histones in the A state, we have the following:

• With probability μαNM=L, a histone in the A state will be
changed to the U state.

• With probability μαNM=L+ γ=2, a histone in the U state will
be changed to the M state.

• With probability αNA=L+ γ=2, a histone in the U state will be
changed to the A state.

• With probability αNA=L, a histone in the M state will be
changed to the U state.

• With probability β, the histone and its neighboring histone in
the same nucleosome will have any modifications removed,
i.e., be set to the U state. This process models spontaneous
nucleosome swap out.

For histones inside the nucleation region, we have the fol-
lowing:

• With probability ημαNM=L, a histone in the A state will be
changed to the U state.

• With probability ημαNM=L+ γ=2+ω+ θðtÞe, a histone in the
U state will be changed to the M state.

• With probability ω+ θðtÞe, a histone in the A state will be
changed to the M state.

• With probability ηαNA=L+ γ=2, a histone in the U state will
be changed to the A state.

• With probability ηαNA=L, a histone in the M state will be
changed to the U state.

• With probability β, the histone and its neighboring histone in
the same nucleosome will have any modifications removed,
i.e., be set to the U state.

As a separate event, once a day in warm conditions and once
a week in cold conditions, the effect of DNA replication was
included in the simulations. During this event, with probability
prep, each nucleosome has both of its histones set to the U
state. As initial conditions, a fraction of simulated cells were
placed in a fully silenced state, completely covered with
M modifications. Table S1 has a full list of the parameters and
their values.
As stated above, some of the parameters take on different

values, depending on the time in the simulation. The bias pa-
rameter, μ, takes on the value μ1 before and during cold. In
a period of warm directly following a period of cold, the bias
parameter takes on the value μ2 for a period tb, before reverting
back to μ1. For the analog model the nucleation parameter, θðtÞ,
is allowed to build up during the cold in all cells and remains at
the same level in the following time period tn, before taking on
a value of 0. In the class 1 digital model, the nucleation pa-
rameter switches from 0 to 1, with a probability that builds up
during the cold. The nucleation parameter then remains at the
same level in the following warm time period tn, before taking on
a value of 0. In the class 2 digital model, the nucleation pa-
rameter can switch dynamically between values of 0 and 1 during
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the cold and in the period directly following cold, with the
fraction of time spent with value 1 increasing as a function of
cold exposure duration, before taking on a permanent value of
0 a time tn after the end of cold exposure. Unless otherwise
stated, all simulations had a period of 1 wk in the warm before
any cold was applied. We next describe in detail how the nu-
cleation parameter builds up and behaves in a different fashion
for the analog and digital models.

New Rules for the Buildup of the Nucleation Peak
The only differences between the analog and digital models
(other than potentially different parameter values) lie in the
dynamics of the nucleation peak buildup and persistence during
and at the end of cold exposure. To have the analog and digital
models functioning on a similar footing to each other, it was
desirable to have similar forms for the buildup of the nucleation
peak. Similar to our previous approach (1), a Hill function was
chosen, due to its simple functional form and excellent fit to the
data. Without more insight into the upstream processes causing
nucleation, it is not possible to be more specific about how such
a profile is generated mechanistically. In the analog model, during
the cold, the nucleation parameter, θðtÞ, builds up according to the
Hill function Cthw=ðK + thwÞ, where tw is the time in cold measured
in weeks, and C, h, and K are parameters. In the class 1 digital
model, generating such a Hill function is more complex. At each
time step of the simulation during cold exposure a cell becomes
competent to nucleate; i.e., the parameter θðtÞ makes a transition
from 0 to 1, with a probability p(tw) equal to

pðtwÞ=Chth−1w
1− twh

��
K + twh

�

Tw
�
K + ð1−CÞthw

�;

where Tw is the number of time steps in the simulation equiva-
lent to 1 wk in real time. This probability is designed to give
a Hill function form for the level of the peak. In the digital class
1 model, cells switch to a nucleating state with a given probability
per unit time but the number of cells that have already switched
will affect the overall rate of further switching. This can be de-
scribed by the equation dSðtwÞ=dtw = ð1− SðtwÞÞpðtwÞTw, where
S(tw) is the fraction of cells that have switched up to time tw.
The above form for the probability is chosen such that the solu-
tion to the fraction of cells that switch is a Hill function, as
chosen for the analog model. In the class 2 digital model, θðtÞ
switches between 0 and 1 dynamically, with the probability
at each time step at which it switches to the nucleating state
(0 to 1) increasing with cold exposure duration according to
θon = θon;max ×Cthw=ðK + thwÞ. The probability at each time step
at which it switches out of the nucleating state (1 to 0) is fixed
at θoff . Note that the parameters C, h, and K are allowed to differ
between the analog and digital models.

Measuring Histone Modification and Spliced mRNA Levels
from Simulations
Results from the simulations are given in terms of the occupancy
of histone modifications of a given type, expressed as a fraction of
the maximum possible levels, when the system is entirely popu-
lated with that modification. The simulated M modification
(H3K27me3) levels shown in Fig. 2A are averaged over all cells
for 1 d up to the corresponding time point on the x axes.
Many of our results are measured as spliced mRNA levels

relative to the nonvernalized level. To determine the relative
expression from our simulations we assume that the relative
reduction in expression is equal to ð1− SeÞ=ð1− SbÞ, where Se is
the fraction of cells that are silenced at the end of the simulation
and Sb is the fraction of cells that are silenced at the beginning of
the simulation. A cell is counted as silenced if its average si-
lencing histone modification occupancy in the FLC gene body is

greater than 0.5, all averaged over the initial 5 d of a simulation
(for Sb) or the 5 d following the 7th d after the final cold ex-
posure (for Se). The precise value of 0.5 is unimportant as
identical results were found for values of 0.4 and 0.6.

Parameterization of the Models
The models were parameterized using a mixture of experimental
ChIP and expression data. ChIP data in the nucleation region
immediately after cold and after a 7-d warm period following cold
and relative expression data after a 7-d warm period following
cold—all NV, 2 wk, 4 wk, 6 wk, and 8 wk of uninterrupted cold—
were used for the fitting. For the ChIP, simulated M levels were
compared with experiments on the assumption that the maxi-
mum possible experimental level, where we plot (H3K27me3
FLC/H3 FLC)/(H3K27me3 STM/H3 STM), is one. This is a
reasonable working assumption as STM is silenced in almost all
cells in a plant and should be accordingly highly methylated. Best
fits were chosen such that as many points as possible satisfied
one-tailed t tests (at the 5% confidence limit), treating the
simulation data as having effectively zero variance. The class 1
digital model satisfied this test at all points, whereas the class 2
digital and analog models failed at the 4-wk cold plus 7-d warm
period for the ChIP and at the 2-wk cold plus 7-d warm period
for the expression, as discussed in the main text.

Generation of the Probability that a Cell Switches to the
Silenced State
We used our simulations to analyze the form of the switching
probability for the analog model (Fig. 3A). Using our best-fit
parameter set, runs were performed for 105 realizations (equiv-
alent to individual cells) for values of the nucleation parameter,
e, ranging from 0 to 0.6 in increments of 0.005—thus generating
121 different levels of nucleation. Simulations were run for an
initial period of 5,760 time steps (the equivalent of a single day),
with a precold/during cold value for the bias parameter and
nucleation in effect. From this initial part of the simulation, the
level of the H3K27me3 nucleation peak was extracted (averaged
over the full time of this initial period and over the population of
simulated cells). Following this (and as in simulations for the full
model), simulations were continued for a period of 23,040 time
steps (the equivalent of 4 d) with nucleation and a postcold value
for the bias parameter and then for a further 17,280 time steps
(3 d) with nucleation but a precold value for the bias (i.e., no
further aid to spreading). After this, the simulations were con-
tinued without nucleation for a further two periods of 5,760 time
steps. For each run, the level of M modifications was then av-
eraged in the body region separately for the further two periods.
Cells were judged to have successfully spread if the average M
level in the body was greater than 0.5 of the maximum possible
for both of these final periods (again the precise value of 0.5 was
unimportant; using 0.4 or 0.6 generated identical results). A
nearly identical procedure was followed for the digital models
for later use in comparing the models. The only difference for
the digital class 1 model was that the fraction of nucleating cells
was varied from 0 to 1 in increments of 0.008. The only differ-
ence for the digital class 2 model was that the probability at each
time step at which individual cells switch to the nucleating state
was varied from 2.5 × 10−5 to 0.1 in varying increments (but most
commonly 0.001). The probability at each time step at which
individual cells lose the nucleation peak was left unaltered.

Initial Presilencing, Weak Nucleation, and Nucleation Region
Feedback Are Not Essential for Our Conclusions
Experimental observations indicate that in the Columbia line
FRI-Sf2, there are low but still significant levels of H3K27me3 at
FLC even before a plant has experienced any cold. There is also
compelling evidence that H3K27me3 levels are higher in the
nucleation region than at the rest of the locus, as seen in our
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ChIP data and ref. 1. To capture this finding in our full model,
a fraction of the cells were started in a fully silenced state (Table
S1). Furthermore, at all times and in all cells, a small amount of
nucleation was added as well as feedback from outside the nu-
cleation region into the nucleation region, with parameters ω
and η, respectively, as described above. These additions were
needed to produce good model fits but were otherwise un-
important to the core mechanisms involved. To ensure that these
effects were not responsible for the differences between the
analog and digital models, we removed them, i.e., set ω = 0 and
η = 1. We found that the switching probability in the analog
model retains its shape and is practically identical to the full
model result shown in Fig. 3A, with nonlinearity particularly
noticeable for low and high nucleation levels. For this reason, the
deficiency of the analog model in responding to short periods
of cold exposure is retained. This change when applied to the
digital models similarly has no effect on the shape of the switching
probability.

Functional Form of the Nucleation Peak Buildup That Would
Be Required for the Analog Model to Match the Digital Class
1 Model
We also performed an analysis of the functional form for the
nucleation peak buildup that would be required to make the
analog model perform equally well to the digital class 1 model
with respect to the expression data. This involves taking the digital
class 1 nucleation peak values during the cold and first computing
the corresponding fraction of cells that are nucleating (but not
presilenced). From this fraction, we can then work out the
resulting digital silencing. Next, we can use the analog switching
probability data to work out the analog peak value required to
give an equivalent level of silencing. Finally, this value can be
combined with the fraction of presilenced cells to generate a final
peak value that can be compared directly with the experimentally
measured nucleation peak.
The starting point is the digital class 1 model fitted to the

experimental nucleation peak values (Fig. 2A). This nucleation
peak value is generated by silenced cells, nonsilenced cells that are
in the nucleating state, and nonsilenced cells that are not in the
nucleating state. The average nonnucleating, nonsilenced peak
height (nnnsc) was taken from the first day of the switching
simulation (see above) with no cells in the nucleating state. The
average nucleating, nonsilenced peak height (nnsc) was also taken
from the first day of the switching simulation, but now with all cells
in the nucleating state. The average silenced peak height (sc)
was taken from the final day of the switching probability simula-
tion with all cells having been previously placed in the nucleating
state. The peak height at any given time should thus correspond
to digT0 = digsil × sc+ ð1− digsil − dignucÞ× nnnsc+ dignuc × nnsc,
where digT0 is the average H3K27me3 level in the nucleation
region for the digital class 1 model at a given time, digsil is the
fraction of cells that are silenced, and dignuc is the fraction of cells
that are nucleating but nonsilenced at a given time. The above
formula is used to extract the fraction of cells dignuc that are nu-
cleating but nonsilenced immediately at the end of cold treatment,
from 0 wk to 8 wk in increments of 1 d in the digital class 1 sim-
ulation. The fraction of cells that would silence for each length of
cold is then calculated by multiplying the fraction of nucleating
cells by the switching probability (0.98 for our chosen parameters).
The computed switching probability for the analog model

(collected as described in a previous section) is composed of
a number of sampled nucleation peak levels together with the
corresponding fraction of cells that switch. This can be inverted
and interpolated (using linear interpolation as there are many
closely spaced samples) to give a function for the nucleation
peak level required to produce a given level of silencing. This
function was used to compute the analog peak height required to
give the same fraction of cells silenced by each period of cold

treatment (from 0 wk to 8 wk in increments of 1 d) as in the
digital class 1 model. However, this peak height does not include
the fraction of presilenced cells of the full model, so the full
required analog peak height is reconstructed using the formula
anaT0 = anasil × sca+ ð1− anasilÞ× anapk. Here anapk is the nu-
cleation peak height that is required to give the same fraction
of silenced cells postcold as for the digital class 1 model as
calculated above, anasil is the fraction of presilenced cells in the
analog model, and sca is the average nucleation peak level for
silenced cells in the analog model. Note that the initial fraction
of silenced cells is the same in the analog and digital models.

Linking the Conceptual and Histone Modification-Based
Models
In the main text, we presented a simple conceptual model for
cold-induced switching and epigenetic memory. In this section,
we link it more closely to our specific histone modification-
based model.
We consider a variable, x, that represents the expression state

of the system. Around x=−1, the system is in a high expression
state, whereas around x= 1 expression of the gene is silenced.
We assume that each of these two states is stable and therefore
that there exists a potential landscape that pushes the system
toward one of the two stable states, as illustrated in Fig. 5. This
potential landscape can be naturally interpreted in the specific
case of a histone-based epigenetic memory system, as we now
describe. Around x=−1, the gene is mostly occupied by acti-
vating A modifications, whereas around x= 1, the system is
mostly occupied by silencing M modifications. The neutral state
around x= 0 represents a roughly equal mixture of M and A
modifications, with the remainder of histones (if any) being
unmodified. Neglecting any biases, when x< 0, with a greater
number of A than M modifications, the system will tend to relax
toward x=−1 due to its intrinsic positive feedback. When x> 0,
with a greater number of M than A modifications, the system will
tend to relax toward x= 1. Thus, there is a threshold that divides
the two stable states of the system. This dynamic positive feed-
back can be viewed as a potential landscape that pushes the
system back to one of the two stable expression steady states.
However, as we emphasized in the main text, this potential
representation is actually more general than the histone-based
modification system, as it can in principle describe any system
with stable steady states without specifying in detail what
mechanism stabilizes the steady states.
In terms of a histone-modification–based model, the single

variable x represents both the expression state of the gene and
the relative levels of M vs. A modifications. However, at FLC the
cold-induced H3K27me3 nucleation peak is potentially present
only over a limited number of nucleosomes, not over the entire
locus. Hence, as we now describe, at the end of cold exposure x
will be lower than previously assumed, to account for the lower
levels of population-level H3K27me3.
Before cold exposure, the system is in a state close to x=−1 and

the entire distribution around this value is below the threshold at
x= 0. At the end of cold exposure, population-level H3K27me3
has increased but only in the spatially limited nucleation region.
In the analog model, this corresponds to an increased value for x
that is approximately equal in all cells and is higher after a longer
duration of cold exposure. In the digital class 1 model, this
corresponds to an increasing fraction of cells having gained
a fixed jump in the value of x. However, even in the digital class 1
case, due to the limited nucleation region, it is likely that the
value of x reached after such a jump is still not sufficient de-
terministically to push the system over the potential “peak”
threshold separating the two stable states, allowing the system
state to be switched. Here two additional factors are important.
First, the system is not entirely deterministic but rather the value
of x is actually drawn from a distribution. Therefore, if the peak
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is maintained for some time following cold exposure [as is known
to be the case experimentally (1)], there is time for the system to
explore values away from its deterministic value and eventually
acquire a value that is large enough to generate a switch. Second,
the full model includes a temporary bias toward the M modifi-
cation (the equivalent of increasing the rate of nonnoisy inter-
actions toward the M state). This effect is like altering the
potential and shifting the threshold such that a smaller deviation
from x=−1 is required to allow a switch of the system from the
active to the silenced state.
Importantly, despite the above changes, the differences be-

tween the digital class 1 and analog mechanisms are still present.
For the digital class 1 mechanism, in an individual cell after
a jump, the portion of the distribution past the threshold is always
the same irrespective of the length of cold treatment and so can
still give a high probability of switching. The number of cells that
switch will therefore still be in direct proportion to the number of
cells that have digitally acquired nucleation. For the analog
mechanism, the portion of the distribution past the threshold will
be approximately equal in all cells. Except in the case of a uniform
distribution around the deterministic value of x (which would be
an extremely unusual configuration), the switching probability
will be nonlinear with the level of nucleation. Thus, the analog
mechanism suffers from the same problem as before—a non-
linear increase in the switching probability with the height
of the nucleation peak, with inappropriately low switching for
smaller peaks.

Perfect Buffering of Interrupted Cold: Exponential Approach
to Saturation
In the main text, we showed that there is a form for the pop-
ulation-level digital nucleation peak buildup in the digital class 1
model that would provide perfect buffering of any number of
interruptions. We now allow for a fraction of cells silenced before
cold exposure, as well as for a small nucleation peak in cells that
have not responded to cold exposure. We therefore fit the
function c0 − c1 expð−c2tÞ, where c0, c1, and c2 are the fit pa-
rameters, to the nucleation peak profile as measured at the end
of uninterrupted cold periods of 0 wk, 2 wk, 4 wk, 6 wk, and 8 wk
and also to the corresponding spliced FLC mRNA levels relative
to no cold treatment. This was done by minimizing the χ2 test
statistic between the above function and the ChIP data points for
the nucleation peak and between expð−c2tÞ and the mRNA data
points for the relative mRNA levels (combining the two for
a single test statistic). The resulting fits are shown in Fig. S1.

Pooling of Experimental Data
For the parameterization of the model, experimental data were
collected in the form of ChIP of H3K27me3 in the nucleation
region and relative expression of FLC. ChIP data were also
collected for the “body” region of the gene but were not used for
fitting. These data were collected over an extended period and
were pooled together. The ChIP data were collected in three
batches of experiments. One of these (batch JQ, Table S2) had
less coverage of the body region and was therefore used only for
the nucleation region. For each batch, the nucleation and body
regions were defined and four primer sets in the nucleation re-

gion and five in the body were averaged over. The details of the
primers used for each batch can be found in Table S2. For two of
the batches, labeled JS and HY, data were collected before and
immediately after cold and after cold plus a period of 7 d of
warm (NV, T0, and T7). For one of the batches, labeled JQ, the
data collected after cold plus a period of warm were taken fol-
lowing a period of 10 d of warm. The models (and a comparison
between the experimental levels in the different batches) in-
dicated that there were no significant differences between these
time points. Hence, these data points were treated as T7 data
and pooled with the others. Similarly, expression data were
collected alongside the ChIP experiments for uninterrupted cold,
with some collected at 7 d after cold and some at 10 d after cold.
These data were again pooled. Additional expression datasets
were collected for the interrupted and uninterrupted cold com-
parison, with the postcold warm period varied in the un-
interrupted sets to match the total warm in the interrupted sets.
For the purposes of comparing the uninterrupted and inter-
rupted cold, these data were treated separately. However, for
model parameterization, the uninterrupted postcold plus warm
expression levels were pooled and treated as T7 data as before.
The number of samples collected in each batch is detailed in
Table S3. For relative expression measurements, spliced FLC
mRNA was measured relative to NV levels. NV refers to sam-
ples that were not exposed to cold (nonvernalized). For un-
interrupted cold, NV samples were taken with 14 d total growth
in the warm condition with the exception of the JQ batch for
which samples were taken with 10 d total growth in the warm
condition. For the interrupted case, for two and three inter-
ruptions, NV samples were taken with 18 d total growth in the
warm condition (except for one batch taken with 22 d total
growth in the warm condition). For a single interruption, NV
samples were taken with 14 d total growth in the warm condition.

Calculation of Errors
For the ChIP data, errors presented are the SEM for measure-
ments from ref. 1 and further biological replicates previously
unpublished. For experimental expression values, technical rep-
licates for each time point (including the nonvernalized samples)
were averaged and this average was treated as an independent
sample. The ratio of this value for each time point was taken with
the nonvernalized sample for the same experiment. These rela-
tive values were then taken as our biological replicate mea-
surements and errors given as the SEM over the biological
replicates. For our simulations, the histone modification occu-
pancy measurements were taken to be the average level of
M modifications in a given region over a period of 1 d. Errors on
this quantity were found as the SEM over all independent sim-
ulation realizations. For the computed FLC expression levels
from the models, 10 simulations of 1,000 realizations were run,
where each simulation was treated as an independent sample for
the fraction of cells silenced, with the error taken as the SEM
over these samples. In all cases these initial errors were propa-
gated through any further processing/calculation steps, using the
standard formula for propagation of errors. The sizes of the
resulting relative errors for the histone modification levels were
very small, on the order of 10−3, and are not shown in the figures.

1. Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying
quantitative epigenetic memory. Nature 476(7358):105–108.
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Fig. S1. (A) Experimentally measured H3K27me3 nucleation peak profile as a function of cold exposure duration (red dashed line and data points, as in Fig. 2).
Blue line is simulated, population-averaged, H3K27me3 nucleation peak profile from digital class 1 model required to perfectly buffer cold interruptions (fitted
to the H3K27me3 level in the nucleation region and relative expression levels). (B) Experimentally measured expression profile following uninterrupted cold
(red dashed line and data points, as in Fig. 2). Blue line is the relative expression level from the same simulation as in A.
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Table S1. Parameters and their descriptions used in the analog and digital models, together with best-fit values where appropriate

Parameter/variable Description
Digital class 1 model

value
Digital class 2 model

value
Analog model

value

L Number of histones in system 70 Same Same
Time step Length of time represented by each time step

in simulation
15 s Same Same

DNA replication Frequency with which system undergoes DNA
replication

1/d (warm), 1/wk (cold) Same Same

μ Bias in transitions A to U and U to M Variable (see below) Same Same
μ1 Bias before and during cold and after period

tb following end of cold
0.9 Same Same

μ2 Bias during period tb following end of cold 1.1 Same Same
α Factor controlling modification of addition/

removal probability per time step due to
other modifications

0.05 Same Same

NM Number of histones with M modification at
given time

Variable Same Same

NA Number of histones with A modification at
given time

Variable Same Same

γ Additive probability per time step with which
random modification is added to
unmodified histone

0.002 (refitted) Same Same

β Probability per time step with which
nucleosome is replaced by unmodified one

0.0025 Same Same

η Multiplicative factor modulating probability
of modification change in nucleation region
due to other modifications

4.0 Same Same

ω Additive probability with which histone is
changed to M state in nucleation region
(weak nucleation)

0.035 Same Same

θðtÞ Multiplicative factor modulating probability
of cold-induced nucleation event

Allowed to take value
0 or 1 in individual cells

Same, but switches
back and forth between

0 and 1 dynamically

Allowed to vary
smoothly from

0 to 1 in individual
cells

θon Probability per time step that a cell switches
into the nucleating state (during cold and
postcold in the class 2 digital model)

N/A Variable—depends
on cold exposure

N/A

θon;max Maximum possible value of θon N/A 0.075 N/A
θoff Probability per time step that a cell switches

out of the nucleating state (during cold and
postcold in the class 2 digital model)

N/A 0.006 N/A

e Multiplicative factor for probability per time
step of histone in nucleation region being
changed to M state as result of cold exposure

0.6 Same Same

prep Probability per time step that nucleosome is
replaced with unmodified one during DNA
replication

0.5 Same Same

t Time in cold, measured from start of latest
cold period

Variable Same Same

tb Number of time steps for which bias is increased
postcold while in warm

23,040 (refitted) Same Same

tn Number of time steps for which nucleation
remains postcold while in warm

40,320 (refitted) Same Same

tw Number of time steps in 1 wk of real time 40,320 Same Same
C Constant of proportionality of the Hill function 1.025 1.0 1.0
h Hill coefficient 2.35 3.0 2.2
K Effective dissociation constant of the Hill

function
10.0 325.0 30.0

Ms Probability with which individual cells are
placed in fully silenced state at beginning
of simulation

0.07 0.09 0.07

Those parameters whose values have altered from previously published fits (γ, tb, tn) are indicated in the Digital class 1 model value column. N/A indicates
that the variable or parameter is not applicable to the corresponding version of the model.
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Table S2. Details of the ChIP primers used in the different experiment batches

Batch
Nucleation region

primers
Nucleation region primer

sequence 5′–3′
Gene body region

primers
Gene body region primer

sequence 5′–3′

JS 48_F CGACAAGTCACCTTCTCCAAA 3,088_F GGGGCTGCGTTTACATTTTA
205_R AGGGGGAACAAATGAAAACC 3,224_R GTGATAGCGCTGGCTTTGAT
307_F GGCGGATCTCTTGTTGTTTC 3,899_F CTTTTTCATGGGCAGGATCA
393_R CTTCTTCACGACATTGTTCTTCC 4,069_R TGACATTTGATCCCACAAGC
679_F TCATTGGATCTCTCGGATTTG 4,213_F AGAACAACCGTGCTGCTTTT
817_R AGGTCCACAGCAAAGATAGGAA 4,360_R TGTGTGCAAGCTCGTTAAGC
817_F TTCCTATCTTTGCTGTGGACCT 5,030_F CCGGTTGTTGGACATAACTAGG
997_R GAATCGCAATCGATAACCAGA 5,135_R CCAAACCCAGACTTAACCAGAC

5,534_F TGGTTGTTATTTGGTGGTGTG
5,649_R ATCTCCATCTCAGCTTCTGCTC

HY 48_F CGACAAGTCACCTTCTCCAAA 3,088_F GGGGCTGCGTTTACATTTTA
205_R AGGGGGAACAAATGAAAACC 3,224_R GTGATAGCGCTGGCTTTGAT
307_F GGCGGATCTCTTGTTGTTTC 3,899_F CTTTTTCATGGGCAGGATCA
393_R CTTCTTCACGACATTGTTCTTCC 4,069_R TGACATTTGATCCCACAAGC
543_F CGTGCTCGATGTTGTTGAGT 4,213_F AGAACAACCGTGCTGCTTTT
700_R TCCCGTAAGTGCATTGCATA 4,360_R TGTGTGCAAGCTCGTTAAGC

1,035_F CCTTTTGCTGTACATAAACTGGTC 5,030_F CCGGTTGTTGGACATAACTAGG
1,148_R CCAAACTTCTTGATCCTTTTTACC 5,135_R CCAAACCCAGACTTAACCAGAC

5,534_F TGGTTGTTATTTGGTGGTGTG
5,649_R ATCTCCATCTCAGCTTCTGCTC

JQa 48_F CGACAAGTCACCTTCTCCAAA — —

205_R AGGGGGAACAAATGAAAACC
307_F GGCGGATCTCTTGTTGTTTC
393_R CTTCTTCACGACATTGTTCTTCC
679_F TCATTGGATCTCTCGGATTTG

AGGTCCACAGCAAAGATAGGAA817_R
1,035_F CCTTTTGCTGTACATAAACTGGT

CCAAACTTCTTGATCCTTTTTACC1,148_R
JQb 48_F CGACAAGTCACCTTCTCCAAA — —

205_R AGGGGGAACAAATGAAAACC
307_F GGCGGATCTCTTGTTGTTTC
393_R CTTCTTCACGACATTGTTCTTCC
543_F CGTGCTCGATGTTGTTGAGT
700_R TCCCGTAAGTGCATTGCATA

1,035_F CCTTTTGCTGTACATAAACTGGTC
1,148_R CCAAACTTCTTGATCCTTTTTACC

JQc 48_F CGACAAGTCACCTTCTCCAAA — —

205_R AGGGGGAACAAATGAAAACC
307_F GGCGGATCTCTTGTTGTTTC
393_R CTTCTTCACGACATTGTTCTTCC
679_F TCATTGGATCTCTCGGATTTG

AGGTCCACAGCAAAGATAGGAA817_R
817_F TTCCTATCTTTGCTGTGGACCT

GAATCGCAATCGATAACCAGA907_R
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Table S3. Details of the number of ChIP and expression samples
taken in each batch

Batch ChIP samples taken Relative spliced FLC mRNA samples taken

JS NV: 2 2 wk T7: 5
2 wk T0: 2 4 wk T7: 5
4 wk T0: 2 6 wk T7: 7
6 wk T0: 2 8 wk T7: 2
8 wk T0: 2
2 wk T7: 2
4 wk T7: 2
6 wk T7: 2
8 wk T7: 2

HY NV: 3 2 wk T7: 3
2 wk T0: 3 4 wk T7: 3
4 wk T0: 3 6 wk T7: 3
6 wk T0: 3 8 wk T7: 3
8 wk T0: 3
2 wk T7: 3
4 wk T7: 3
6 wk T7: 3
8 wk T7: 3

JQa NV: 1 4 wk T10: 3
2 wk T0: 1 8 wk T10: 3
4 wk T0: 4
8 wk T0: 3
4 wk T10: 3
8 wk T10: 2

JQb NV: 1
2 wk T0: 1

JQc 2 wk T10: 1
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