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Christian M. Schneider and Marta C. González
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SUPPORTING ONLINE MATERIALS

Data

Our data consist of anonymized call detail records collected from three cities (R1,R2, and

R3) in two different industrialized countries. The same provider was used for the two cities

in the same country (R1 and R2), while another provided the remaining city (R3). In R1

and R2, data cover 15 months while R3 contains 5 months of data. In total there are over

1 billion events contain the time and duration of a communication event between a caller

and callee as well as the towers used by one (in the case of R3) or both (in the case of R1

and R2) of the users. Though data sharing agreements to protect privacy prevent us from

sharing the locations of each region, they are major metropolitan areas with densities closely

matching that of Boston, MA, USA.

Social Network Extraction

To build the social networks for each city, we employ the following procedure. First,

we consider only users that appear in over 200 communication events within each city’s

metro region over the course of the entire data collection period. Second, we only draw an

edge between two users if they make more than two calls between them during that time.

Properties of the three networks as well as the number locations (cell towers) within each

metro region can be found in Table S1.

TABLE I. Basic statistics on the networks and spatial extent of each region considered.

City Nodes Edges 〈k〉 Towers

R1 133,587 997,287 14.9 249

R2 183,486 2,487,661 27.1 447

R3 635,731 4,197,093 13.2 935

Metric Definitions

Cosine Similarity, cos θ: In this work the cosine similarity is defined as the cosine of the

angle between the location vectors of two users, cos θi,j =
vi·vj

|vi||vj| . In general, cosine
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similarity can take values from -1 to 1, but in our case it is non-negative as it is

impossible for location vectors to have negative elements. This restricts angles to

between 0 and π
2
. We use the cosine similarity as a measure of how similar visitation

patterns are between two users.

predictability, |v̂||v| : Predictability provides an upper bound on how much of a target user

i’s visitation patterns can be reconstructed by the visitation patterns of a set of other

users, F . In general, F can be made up of any users, but here we define it as the

set of social contacts called by user i. Location vectors exist in an L-dimensional

location space, where L is the number of unique locations that can be visited. In

practice, most users visit only a small number of possible locations and the locations

vectors of the users in F typically span only a subspace of the entire location space. If

this subspace contains most of user i’s location vector, then we can reconstruct their

mobility patterns with a high degree of accuracy. If, however, user i’s location vector

is orthogonal to each vector in a basis of this subspace, then none of the user’s visits

can be recovered.

To quantify this, we first construct a |F | × L matrix A = [vf1 , vf2 , . . . , vfn ]ᵀ where

fj are contacts in F . We next use qr-decomposition to construct an orthonormal

basis B = q1, . . . , q|F | of A that spans the subspace of the entire L-location space

that is defined by the users in F . We can then project the original location vector of

user i into this subspace to create the best approximation v̂ of that user’s visitation

patterns that can be constructed by users in F : v̂ =
∑|F |

j=1〈qj,v〉qj. To measure the

accuracy of this approximation, we take the ratio it’s magnitude to the magnitude of

the original location vector for the target user, predictability = |v̂|
|v| . Predictability can

take values between 0 and 1 where the former indications none of the user’s visits can

be reconstructed by linear combination of users in F and 1 indicates all of a user’s

visits can be recovered.

We caution, however, against interpreting intermediate values of predictability as

“fraction of visits correctly predicted”. The magnitude of vectors are computed using

the L2 norm are thus not equivalent to comparing percentages of visits recovered.

The two values, however, are highly correlated in this case as there can be no negative

elements in location vectors or their approximations. Finally, we note that predictabil-
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ity here is an upper bound approximations to a user’s location vector using a linear

combination of their contacts visits. Computing predictability requires full knowledge

of a user’s location vector. In the absence of this information, some proxy must be

identified to replace the coefficient 〈qj,v〉. We encourage future work exploring this.

Number of Unique Locations Visited, S: The number of unique locations visited by

a user is denoted as S. It can be computed directly from a user’s location vector as

S =
∑

i sign(vi).

Degree, k: A user’s degree in the social network is denoted as k.

Contact Rank, r: For each user, we assign a contact rank r as a measure of tie strength

to every neighbor in a user’s ego network. We rank every contact of a user according

to the number of calls made between them and assign a value of r = 1 to the contact

exchanging the highest number of calls with the ego. We note that contact rank is not

necessarily symmetric. User i may rank as user j’s 3rd most called contact while user

j is only user i’s 10th most called contact.

Jaccard Similarity: The Jaccard similarity is a measure of set intersection. It is computed

as the fraction of elements from set A that exist in set B. In the context of our social

network, it is a measure of tie strength is defined as the fraction of contacts shared by

two users i and j: jaccard(i, j) =
Fi∩Fj

|Fi||Fj | , where Fi is the set of neighbors contacts of

user i.

Entropy, H(f callsi→j∈C): Entropy is traditionally used as a measure of randomness or disorder.

In the context of this work, we measure the information entropy of various probability

distributions. Distributions with probability mass spread more evenly across all possi-

ble outcomes are considered to be “more random” and have higher entropy than distri-

butions where a single outcome is far more likely than all others. Shannon’s informa-

tion entropy for a random variable X is computed as H(X) = −
∑n

i=1 p(xi) log p(xi).

In our case, we measure the entropy of the distribution of call frequency of a user to his

or her social contacts. High values of entropy are calculated when a user distributes

their calls evenly to all social contacts while low values are observed when they call a

small number of contacts far more than the rest.
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Controlling for number of calls

While mobile phones make excellent passive sensors of social behavior and mobility, they

suffer from non-uniform sampling rates. Information is only recorded when a user uses the

device leaving more observations at certain times of the day or week than others. Moreover,

different users may use their devices more or less depending on habits or socio-economic

variables. Because of this, we are careful to ensure that any metrics we measure in the data

are not biased by different sampling rates.

Figure S1 shows the distributions of four metrics in each region for groups of users with

similar numbers of calls over the observation period. In general, we find that calling fre-

quency of users does not affect these distributions with the exception of the number of unique

locations visited S, which increases with calling frequency. However, even in these cases the

shape and trend of the distribution remains the same for each group with only the means

shifted. Finally, we note that for region R3, the number of unique locations visited takes

on a slightly different shape than regions R1 and R2 due to the fact that we only obtain

location information for callers in this city and not for receivers as well. Our new metrics of

mobility, cosine similarity and predictability, are least affected by different sampling rates.

We perform the same analysis for correlations between social behavior and mobility. For

users with a given number of calls, we correlate their social metrics such as degree or the

entropy with which they distribute calls to contacts with mobility metrics. We find that,

similar to the distributions, most of these correlations do not depend on the number of calls

made by a user. In cases where there is dependence, the trends hold within groups of users

that make the same number of calls (Figure S2).

Controlling for Degree

We measure the entropy of the distribution of calls that each user makes to his or her

contacts. Users with higher entropy spread their calls evenly amongst social ties, while

lower entropy means most calls go to fewer. The degree of a node sets an upperbound on

the entropy a user can have. Thus, any correlations we measure may be biased by differences

in the degrees of each user. To control for this, we plot correlations of call entropy to other

metrics for groups of users with the same degree. Figure S3 shows that these trends are
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unaffected by differences in degree.

Social Distance and Geographic Similarity

We compute the average cosine similarity between two nodes separated by a social dis-

tance of k hops. Much like previous studies of homophily within social networks, we find

that geographic similarity is elevated for two individuals who call each other, but this in-

crease in similarity extends outward up to three hops away after which users are as similar

as they would be to random users (Figure S4).

Clustering

The k-means clustering algorithm must be seeded with the number of clusters to find a-

priori. In order to identify a reasonable number of clusters, we run the algorithm for multiple

values of k and examine the resulting clusters as well as the silhouette score for each choice.

The silhouette score decreases as the number of clusters increases indicating that there is

little added benefit from additional splitting (Figure S5). Moreover, when examining the

centroids of clustering results, the three main clusters identified break into similar groups

that show small differences such as on weekends or in absolute similarity level (Figure S6).

To ensure our results are not an artifact of the clustering algorithm chosen, we also perform

clustering using a hierarchical, agglomerative clustering technique using Ward linkage. In

each region, we obtain clusters that match those found with k-means very closely (Figure

S7).

Ego-network link type mixes

To ensure that our results are not an artifact of call frequency we plot the mix of an

individual’s social network as a function of the number of calls they make (Figure S8).
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FIG. S1. Distributions of different variables (columns) for each of the three regions (rows) for

groups of users with different numbers of total calls. To ensure that measurements are not simply

artifacts of differences in the amount a users interacts with their phone, we plot distributions of

variables for groups of users with different activity levels. Users are binned first according to the

number of records they have in the data set, then distributions of various mobility and social metrics

are plotted for each user group. In general calling frequency does not affect these distributions

with the exception of the number of unique locations visited where the mean is shifted right for

users with more calls.
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FIG. S2. Various correlations metrics related to social behavior and mobility while controlling for

the number of calls made by each user. Again, we bin users based on the number of records they

have in our data set and then measure correlations between social and mobility metrics. We find,

as was the case with distributions, these correlations are unaffected by sampling frequency.
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FIG. S3. Correlation between the entropy of a node’s call frequency distribution to contacts and

mobility variables may be affected by the degree of each node. Measures such as entropy and

predictability will naturally be affected by the number of contacts each user has. For example if

a user contacts for people, the maximum entropy of the distribution of call frequencies to those

individuals will naturally be higher than a user who has few friends. To ensure our correlations

are not artifacts of the number of contacts each user has, we plot these correlations for groups of

users with the same degree and show that these relations still hold.
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FIG. S4. Social distance and geographic similarity. Nodes who contact each other are far more

similar to each other than two randomly selected nodes. Here we compute the average mobility

similarity between nodes separated by a certain number of hops. Even for nodes separated more

two or three hopes, we elevated levels of similarity when compared to two randomly selected nodes

in the network.
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FIG. S5. The silhouette score for different numbers of clusters. The silhouette score is a measure

of the ratio between intra- and inter-cluster variance that gives a rough measure of the quality of

clustering results (higher is better). The score drops steadily from the chosen number of clusters,

3, indicating that little is gained by additional splitting.
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FIG. S6. k-Means clustering results for various values of k in city R1. We perform k-means

clustering for multiple values of k as a manual check that our choice of 3 clusters is appropriate.

In general, additional clusters appear to be variations of three main themes used in the main text.
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FIG. S7. Results from a hierarchical, agglomerative clustering algorithm with Ward linkage. This

clustering method clusters nodes based on connecting data points together if they are within some

distance of one another and then examining connected components. The clusters in each region

closely match results from k-means, suggesting that our results are robust to the exact clustering

algorithm used. 13
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FIG. S8. The mix of a user’s ego network versus the number of calls they make. To ensure that the

relationship between the mix of a user’s ego network and their mobility isn’t simply due to the fact

that user’s with different numbers of records having different edge mixes, we plot the average make-

up for suers with different numbers of calls. We find that regardless of a user’s calling frequency,

the makeup of their social contacts is stable.

MODEL COMPARISONS

GeoSim Model

To account for heterogeneity in how social different person’s are, we allow each individual

in our simulation to have a value of α drawn from a distribution. We run the GeoSim

model with various distributions of α to determine which best approximate measurements

from the data. Figure S9B shows the various distributions of α we simulate while Figures

S9C and D show resulting similarity and predictability distributions when compared to

empirical measurements. We find that exponential distributions p(α) ∝ exp(−λα) result

in distributions that match the general trend of the empirical distributions. We expect

the precise parameter, λ, to vary from city to city or culture to culture, but values between

0.1and0.3 produce adequate results and are consistent with previous works that find roughly

15%-30% of trips are made for social purposes.
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FIG. S9. Our extended mobility model. (A) A diagram showing the choices made by an individual

in deciding where to move next. We compare simulation results for different values of social

influence α to distributions of (B) similarity and (C) predictability found in real data. The bimodal

similarity distribution is recovered for higher values of α while the predictability results suggest

that this parameters may vary for individual to individual resulting in a mix among the whole

population.

Individual Mobility Model (IM Model)

In their work, Song et al. [1] present a model for individual human mobility that we

extend to the GeoSim model presented here. When α = 0 for all individuals, we recover

Song’s model. The IM model relies on a 2 parameters, ρ and γ which control the propensity
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for a user to explore a new or return to a previously visited location. By varying these

parameters, the authors can generate a range of mobility behaviors related to the rate of

exploration and the frequency that users visit locations. We find that values of ρ = 0.6 and

γ = 0.6 produce reasonable fits to both the exploration rates (S(t)) and the frequency that

users return to locations fk. We leave distributions such as the waiting time distribution

measured by Song intact with β = 0.8.

Travel-Friendship Model (TF Model)

The model presented by Grabowicz et al. [2] proposes to model mobility and the growth

of social networks simultaneously. In this model, geographic space is treated as a very small

grid with cells δ on a side. At each time step, a user makes choices related to travel and

friendship. For travel, an individual chooses to travel to the location of a random friend

with probability pv or with probability 1 − pv, chooses to jump to a new location. In the

event of a jump, a distance is chosen based on the distribution measured by Song et al.

and the individual then surveys all grid cells at that distance and chooses one to move to

proportional to the population density of the cells. After a user has made a travel decision,

they make choices related to friendship. For each other person within the individual’s grid

cell, a link between them is created with probability p, and with probability pc a link is

created with a random person anywhere. As opposed to other models, which assume the

social network is fixed, the TF model builds the social network simultaneously with mobility

choices. These dynamics reproduce social network distributions as well as distributions of

distance between friends.

We implement the above model as described, but add one additional step to make it

comparable to the CDR data used in this study and modeled by Song et al. The δ grid

cells in the TF model are on the order of 100m × 100m in the original implementation.

This is far smaller than the coverage areas of towers within a city save for the very dense

downtown areas. To make the the data from the two models directly comparable, we simply

assign a users location to the tower that covers the grid cell they have jumped to. This

preserves all the original behavior of the TF model, while making it possible to perform a

fair comparison.

Finally, the TF model has four parameters: δ, p, pv, and pc. We set these parameters to
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the middle of the ranges estimated by Grabowicz et al: δ = 0.001, p = 0.1, pv = 0.15, and

pc = 10−3. We run this model for the same population size and length as the IM model and

GeoSim models.

Source Code

A Python implementation of the GeoSim model has been made available at http://

humnetlab.mit.edu/wordpress/downloads/.

∗ jltoole@mit.edu

[1] Song C, Koren T, Wang P, Barabási AL (2010) Modelling the scaling properties of human

mobility. Nature Physics 6:818–823.

[2] Grabowicz PA, Ramasco JJ, Goncalves B, Eguiluz VM (2013) Entangling mobility and inter-

actions in social media. p. 16.

17


