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I. MOVIES

Movie 1:- A fruit fly undergoing a typical roll per-
turbation and correction maneuver, corresponding to
the same data shown in Figure 2. The three sides of
of the 3D box show the raw movies from the three fast
cameras. The 3D-rendered fly represents the kinematic
data of the body and wing positions in each frame. The
fly’s center-of-mass trajectory is shown by a green line,
on which the red segment corresponds to the location
of the perturbation. The time in ms is shown on the
bottom left corner. The movie is played three times to
show the same maneuver from different views. The third
time also shows traces of the wing-tip positions.

Movie 2:- Roll perturbation and correction maneuver
during nearly-hovering flight. The fly was perturbed 35◦

to its right and corrected to 10% of the perturbation
within Tc = 25ms, or 5.5 wing-beats. Full correction
ρ = 0 was obtained at t = 28ms. By 40ms the fly shows
a slight over-correction to ρ = −5◦. The yaw deflection
that accompanied the roll perturbation is also seen.

Movie 3:- Roll perturbation and correction maneuver
in which the perturbation was applied when the fly
was already rolled by 20◦ to the right. Prior to the
perturbation the fly was also flying with apparent
side-slip. The fly corrected to zero roll 30ms after the
onset of the perturbation. A yaw-right deflection as a
result of the external torque is evident.

Movie 4:- Roll correction maneuver following two con-
secutive perturbation pulses. When the movie starts the
fly is already correcting for the first pulse. The second
pulse is applied at t = 0 for 5ms. The leg-spreading
response as a result of the first pulse is clearly seen. This
correction maneuver is indistinguishable from maneuvers
following single-perturbation pulses, in terms of the
body and wing kinematics as well as the parameters of
the PI controller. The corresponding data is shown in
Figures S2 and S3.

Movie 5:- Extreme roll perturbation event, corre-
sponding to Fig. 7. The fly was rolled 8 full times to its
right by a series of magnetic pulses. The fly regained
control 3 − 4 wing-beats after the perturbation ended.
Full correction to ρ = 0 was not captured in the movie
since the fly exited the filming volume. Note that
during the perturbation the fly was unable to oppose
the magnetic torque. In fact, the right wing, which in a
typical correction maneuver should have been flapping
with a larger stroke amplitude, hardly flapped at all and
occasionally even seemed disconnected from its flight
power muscles.
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FIG. S.1. The roll angle (black dashed line), roll velocity
(solid red line) and the fly’s response ∆Φ (green circles) as
a function of time, for the correction maneuver in Figures 1
and 2 in the main text. The vertical gray stripes indicate
back strokes and the white stripes indicate forward strokes.
Note the two vertical axis measuring angle (for ρ and ∆Φ)
and angular velocity (for ρ̇).

II. ROLL AND ∆Φ KINEMATICS

Figure S.1 shows the roll angle (dashed), roll velocity
(red) and the fly’s response ∆Φ (green circles) as a func-
tion of time, for the correction maneuver in Figures 1 and
2 in the main text. The fly’s response is almost instan-
taneous with the roll kinematics, supporting our result
that an I-only control model, in which ∆Φ ∝ ρ, must
have an unfeasibly small response time. The roll velocity
rises and peaks before the roll angle, thus a PI control
model that includes the roll velocity follow the changes
in the roll angle despite its latency.

III. CONTROL MODEL FITTING

To fit the parameters of the PI control model ∆Φmodel

(Eq. 3) to the measured data we define the following error
function:
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E(∆T,Kp,Ki) =
1

N

N∑
j=1

[
∆Φmodel(∆T,Kp,Ki, tj)−

∆Φexpr(tj)
]2
, (S.1)

whose minimization gives the three fitted parameters.
The discrete times tj are the mid-halfstroke times when
∆Φexpr(tj) was measured (green circles in Figs. 2, S.4f).
The fit process considered data measured between t =
∆T and t = 40ms, to include only the correction maneu-
ver. Because E(∆T,Kp,Ki) is fast to calculate and the
range of each of its parameter could be readily confined,
we were able to evaluate the error function on a grid in
the 3D parameter space and directly examine the struc-
ture of the error function. We could limit the range of
each parameter, for example, ∆T is positive and bounded
by the duration of the entire correction maneuver. The
other two parameters are either zero or positive and their
upper search bounds were determined based on reason-
able cut offs given the trends in the errors. Hence, we
could directly verify that the function has a single global
minimum within the evaluated parameter range. The
minimum was obtained on one of the grid points. The
grid spacing was fine enough such that going to nearby
points had negligible change in the cost function com-
pared with measurement accuracy. Fig. S.2 illustrates
the error landscape for the maneuver shown in Fig. 2,
by plotting the contours of E−Emin in three orthogonal
cross sections around the global minimum Emin.

We use such plots to evaluate the confidence intervals
(CI) of the fitted controller parameters. We assume that
the distribution of the measurement error of ∆Φexpr is
Gaussian, N(0, σ2), with zero mean and σ = 2◦. This
measurement error was evaluated in a previous paper by
our group [1] and also verified manually for each wing
stroke in the current data set. The reduced error func-
tion is, therefore, e = E/σ2. If the model perfectly pre-
dicted the data, the reduced error function becomes a
sum of the squares of N independent standard normal
random variables, namely, the χ2 distribution. The con-
fidence interval is obtained by evaluating the change in a
parameter that results in a unity change in e or, equiv-
alently, a σ2 change in the error function E. In Fig.
S.2 the contour of σ2 = 4 corresponds to the estimated
confidence intervals of the three fitted parameters in the
specific maneuver: ∆T = 4.4± 0.25ms, Kp = 6± 0.5ms,
and Ki = 0.7± 0.05.

IV. RECOVERY FROM A DOUBLE PULSE
PERTURBATION

Figures S.3 and S.4 show measured data for a recovery
maneuver from a double pulse perturbation (Movie 4).
The results show the same correction mechanism as for
a single pulse perturbation (Figures 1 and 2 in the main
text).

V. ANALYZING PREVIOUSLY PUBLISHED
DATA ON ROLL RESPONSE OF TETHERED

FLIES

To further test the PI control model, we used it to
predict the roll-response of tethered fruit flies previously
published by Dickinson in [2]. In these tethered exper-
iments flies were mounted on a gimbaled apparatus os-
cillating along a given axis, such that the flies had no
visual cues relating to the imposed rotation. The wing-
stroke amplitudes were measured using phorodetectors
that recorded the shadow of each wing. We focus on the
roll-response measurements, in which flies were oscillated
along a horizontal roll axis termed “functional roll” (hb
in Fig. 1c in the main text). Although this axis is dif-
ferent than the Euler roll axis considered in this paper,
it can be shown for a fly pitched up by 45◦, a given ro-
tation along the “functional roll” generates almost the
same deflection along the Euler roll. Hence, when dis-
cussing rotations along the Euler roll angle, the two roll
definitions are practically equivalent.

The stroke amplitude of the left wing was measured
during an oscillating roll perturbation with an amplitude
A = 25◦, period T = 0.63s, and a maximum roll ve-
locity of 250◦s−1. The roll angle is described by ρ(t) =
A sin(ωt) and the roll velocity is ρ̇(t) = Aω cos(ωt). The
wing response data was plotted both as a function of the
roll angle (Fig. 3d, [2]) and roll velocity (Fig. 3e, [2]).
We applied standard image analysis techniques to ex-
tract the data from these two plots and used the data to
find the parameters of the corresponding PI controller,
as described below (Figs. S.5 and S.6).

Since the roll oscillation period in the tethered experi-
ment is 630ms, the time delay measured in the free flight
experiments ∆T ≈ 5ms is negligible. Hence the response
in the tethered experiment is effectively instantaneous
and the functional form of the controller can be written
as:

∆ΦLeft(t) =
1

2

(
Kpρ̇(t) +Kiρ(t)

)
, (S.2)

in which ∆ΦLeft(t) ≡ ΦLeft(t)−ΦMean is the deviation of
the left wing amplitude from its mean value ΦMean. The
1
2 factor is due to the fact that data was measured for the
left wing rather than for the stroke amplitude difference
between the wings (as in Eq. 3 in the main text). Twice
the slope of the linear fit to ΦLeft(ρ̇) reported in [2] was
used to obtain Kp = 32.2ms. To obtain Ki we manually
fit the data and obtain a value of Ki = 0.2. A fitting
algorithm was not used for Ki, because many data points
were clustered near ±25◦ and could not be extracted.

The prediction of the PI controller fit are plotted in
Figs. S.5 and S.6 along with the extracted data from [2].
Fig. S.5a shows that the prediction of the PI model plot-
ted as a function of the roll angle yields an ellipse with
R2 = 0.77. Similarly, the PI model prediction as a func-
tion of the roll velocity (Fig. S.5b) also yields an ellipse
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FIG. S.2. The error landscape for the fitting process of a PI controller model for the movie shown in Figs. 1 and 2 of the main
text. The three panels show contours of the error function E(∆T,Kp,Ki) in three orthogonal cross section that coincide at the
minimum of E. The numerical values of the minimizing parameters (∆To,Kpo,Kio) are given in the title of each panel. The
inner-most counter of σ2 = 4 corresponds to the evaluated confidence interval.

with R2 = 0.82 (compared with R2 = 0.62 of the lin-
ear fit). The measured data and PI-model prediction are
also plotted in the 3D space whose axes are (ρ, ρ̇, ΦLeft)
(Fig. S.6). We find that the ΦLeft output as a function of
the (ρ, ρ̇) stimulus is well described by an inclined ellipse.

The 3D shape of the response ΦLeft as a function of
(ρ, ρ̇) lies on a plane defined by (Eq. S.2). In this par-
ticular case, the stimulus is sinusoidal in time so that in
the (ρ, ρ̇) plane it forms an ellipse. The corresponding
response is an inclined ellipse that lies on the response
plane. Hence, plotting the projections of the 3D ellipse,
as in the plots of ΦLeft(ρ) and ΦLeft(ρ̇) in [2], each yield
an ellipse (Fig.S.5a,b).

Intuitively, the upper right quadrant of the ellipse in
Fig.S.5a corresponds to times when the fly is rolled to its
left (ρ > 0) with a leftward roll velocity (ρ̇ > 0). The re-
sponse is maximum at these times because the two terms
of the PI controller are positive (Eq. S.2). The bottom
right quadrant of the ellipse in Fig.S.5a corresponds to
times when the fly is rolled to its left (ρ > 0) but with
a rightward roll velocity (ρ̇ < 0). The response at these
times is smaller than at the upper left quadrant since the
two terms in Eq. S.2 have opposite signs. Similarly, the
response is minimum when ρ < 0 and ρ̇ < 0 (bottom left
quadrant).

Finally, following [2], we plot the fly’s response as a
function of the roll acceleration (Fig. S.7), along with
the prediction of the PI control model. Note, that the
PI model is a function of roll angle and roll velocity, and
does not use information about roll acceleration. Still,
the plot shows that the PI model can explain the observed
behavior without using the roll acceleration. It supports
the hypothesis that fruit flies do not measure their roll
acceleration.

The prediction of the PI controller model is also con-
sistent with measurement of the temporal response of a
fly to a roll perturbation (Fig. 2 in [2]). The tethered

experiment showed a mean stroke amplitude difference
between the two wings of ∆Φ = 8◦ (peak-to-peak) in
response to an sinusoidal roll stimulus of 25◦ amplitude
and 0.8s period. Using the PI controller (Eq. 3 in the
main text) with the parameters fitted above predicts a
response of ∆Φ = 8.0◦. Moreover, the phase of the re-
sponse with respect to the stimulus is also predicted by
the model. The peak asymmetry was observed at times
between the maxima of ρ and the maxima of ρ̇, implying
that both terms of Eq. S.2 have comparable contributions
to the response, as we see in the free flight experiments.

The values of the controller parameters fitted for the
tethered experiment are different than the controller pa-
rameters fitted to the free flight experiment reported here
(Table II). Possible reasons for this difference are natural
variablity among flies (as characterized by the free flight
data) as well as the different experimental methods: us-
ing tethered compared to free flying animals.

In summary, the PI controller well-describes results of
previous experiments with tethered flies, with a corre-
lation coefficient between the predicted and measured
wing amplitude of 0.91. Moreover, the tethered flies were
placed in a sealed apparatus such that they did not have
any visual cue about the imposed rotation, suggesting
that the fly’s roll response is mediated by mechanical
sensors, consistent with the PI control model.
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FIG. S.3. Roll perturbation and correction following a double-pulse perturbation. (a) Images from three orthogonal fast
cameras of a fruit fly undergoing the perturbation and correction maneuver. Each panel shows 4 superimposed images, before,
during and after the second perturbation pulse. The 3D-rendered fly represents the kinematic data of the body and wings.
The location of the perturbation (red line) is shown on the fly’s center-of-mass trajectory (green line). The second snapshot
shows the fly rolled to 70◦ to its right due to the second perturbation pulse. (b) Top and side-view snapshots of 15 consecutive
wing-strokes during the maneuver. Snapshots were taken at the same phase along the wing-stroke, where the wings are in their
forward-most position. The snapshots show a clear asymmetry in the wing-stroke amplitude, such that the right wing increased
its amplitude and the left wing decreased its amplitude. (c) The body Euler angles during the maneuver. The first perturbation
torque was not captured in the movie, but the perturbation of 37◦ in roll and the recovery are seen in t = (−20) − 0ms. The
second perturbation torque was on between 0 − 5ms (yellow stripe), and resulted in a 70◦ rightward roll deflection. The white
and gray stripes represent forward- and back-strokes, respectively. Yaw and pitch angles were sampled at 8000Hz. The roll angle
was measured manually in the middle of every half-stroke and smoothed by a quintic spline (black dashed line). Measurement
errors are comparable to the size of the plotted symbols.

VI. ADDITIONAL PI CONTROLLER FITS

Figures S.8 - S.10 show three more examples for the fit
of the PI controller model. In addition to the fitted curves
(red) these plots show that the response of the fly in terms
of its wing stroke amplitude asymmetry is continuous,
thereby excluding discontinuous control models.
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FIG. S.4. Roll correction mechanism for the double-
perturbation movie shown in Fig. S1 and Movie 3. (a-c)
Wing stroke kinematics as a function of time: (a) The stroke
angle φ of the right (red) and left (blue) wings; (b) their peak-

to-peak amplitude Φ, and (c) their angular velocity φ̇ (c).
(d-e) Mean aerodynamic torque along each half stroke, calcu-
lated from the measured wing kinematics using a quasi-steady
state aerodynamic force model. Solid symbols highlight the
correcting wing strokes. (d) the torque component along the
body axis x̂b, such that negative torque induces a corrective
left roll; (e) The torque component along ẑb, such that posi-
tive values have corrective effect. (f) Wing stroke amplitude
difference ∆Φ (green), and a fit for a PI controller (eq. 1,
red), with ∆T = 3.75ms, Kp = 3.5ms, and Ki = 0.95. The
contributions of the 1st and 2nd terms of Eq. 1 are shown in
blue and black, respectively. Measurement errors in (a-f) are
comparable to the symbols size.
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FIG. S.5. The data extracted from [2] for the left wing amplitude in response to a periodic roll oscillation. On the left panel
the red circles represent the response to the roll angle. On the right panel the blue circles represent the response to the roll
velocity in the same measurement. The black solid ellipses on both panel show the predicted response of a PI control model.
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FIG. S.6. The data extracted from [2] for the left wing am-
plitude in response to a periodic roll oscillation is plotted in
the 3D space whose axes are (ρ, ρ̇, ΦLeft). The data points
are colored according to their original color in (Fig. S.5). The
black solid line shows the predicted response of the same PI
control model shown in Fig. S.5.
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FIG. S.7. The data extracted from [2] for the left wing am-
plitude in response to a periodic roll oscillation is plotted as
a function of roll acceleration. The black solid line shows the
predicted response of the same PI control model. Importantly,
the PI model is a function of roll angle and roll velocity, and
does not include the roll acceleration. The plot shows that
the PI model can explain the observed behavior without us-
ing the roll acceleration. It supports the hypothesis that fruit
flies do not measure their roll acceleration.
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FIG. S.8. PI controller fit. (a) The roll angle ρ as a function
of time (green). The gray line is ρ shifted by ∆T , which is the
fitted time delay for the PI controller model. (b) The roll ve-
locity ρ̇ (blue). The gray line is ρ̇ shifted by ∆T . (c) The wing
stroke amplitude asymmetry (green circles) ∆Φ measured as
a function of time for each half stroke. The red line is the
response of the fitted PI controller. The dashed green line
shows the contribution of the integral term of the controller,
namely Kiρ(t − ∆T ). The dashed green line shows the con-
tribution of the proportional term Kpρ̇(t− ∆T ). Both terms
have comparable contrubitions to the overall response.
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FIG. S.9. Similar plots to the ones in Fig. S.8 for a different
correction maneuver.
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FIG. S.10. Similar plots to the ones in Figs. S.8 and S.9 for
a third correction maneuver.


