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ADDITIONAL METHODS 

Experimental Methods:   

Synthesis and analysis of twisted nanoribbons:   CdTe NPs were synthesized with the reduced 

amount of thioglycolic acid (TGA) stabilizer. We used the literature procedure (1) with the TGA 

to Cd2+ ratio of ~1.1. To induce the self-assembly of CdTe NPs, templating chirality of CPL, the 

amount of TGA in the dispersion was significantly reduced by precipitation and redispersion of 

CdTe NPs in purified water at  pH = 9. The pH was adjusted by the addition of 0.1 M NaOH, 

and the precipitation was done by addition of methanol followed by centrifugation for 20 min. 

The dispersion was placed in a dark room, and then exposed to circularly polarized light. As the 

NPs were assembled into nanoribbons by illuminated CPL, the orange color was turned to dark 

green.  

The morphology of assembled nanoribbons were analyzed by tapping mode atomic force 

microscopy (AFM) with  NTEGRA Spectra tips (NT-MDT), scanning electron microscopy 

(SEM, FEI Nova), and transmission electron microscopy (TEM, JEOL 3011) To measure optical 

activity, the nanoribbons were separated from the solution by gentle centrifugation (bench-top 

centrifuge, 3000 rpm, 3 min) and redispersion in distilled and deionized water. The CD spectra 

were obtained by a JASCO J-815 instrument. The Fourier transform infrared spectroscopy 

(FTIR), energy dispersive spectrometry (EDS, JEM-2200FS, JEOL) and X-ray photoelectron 

spectra (XPS, Kratos Analytical AXIS Ultra) were used to exam the composition of nanoribbons.  
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centrifugal filter (Millipore). The optical activities of obtained CdTe NPs were measured using 

CD spectrometer (JASCO J-815).  

3D TEM tomography:   The electron tomography studies at room temperature were carried out 

on a Tecnai F20 electron microscope (FEI Corporation, Hillsboro, OR.) equipped a Gatan 4K × 

4K CCD camera and a field emission gun (FEG) operating at 200 kV. A series of 2D projection 

images were recorded at a nominal magnification of   11,500 by tilting the specimen from -75º 

to 60º for LH nanoribbons and -66º to 75º for RH nanoribbons in increments of 1.5º. Images 

were recorded at an underfocus value around 7 µm. Colloidal nanogold particles of 15 nm in 

diameter were used as fiducial markers to aid tracking during data collection and image 

alignment during reconstruction. A tomography reconstruction software package IMOD (3), was 

used to align the tilt series and calculate three-dimensional tomograms using a weighted back 

projection algorithm. The surface rendering was generated using the UCSF Chimera software (4). 

 

Single nanoribbon scattering, extinction, and CD spectroscopy: Measurements of scattering 

spectra on single twisted nanoribbons were performed with a homebuilt dark-field microscope. 

In brief, the unpolarized light from a halogen lamp used as a light source was focused by an oil-

immersion dark-field condenser (Zeiss, N.A. = 1.40) and transmitted scattered light was 

collected by a 50X air-spaced objective (Zeiss, NA = 0.8) and guided to either an avalanche 

photodiode detector (Micro Photon Device) or a spectrometer equipped with a liquid nitrogen 

cooled CCD camera (Horiba Jobin Yvon). Nanoribbons were deposited on an indexed 

microscope coverslip, which was mounted on a XY piezo scanning stage (Physik Instrumente). 

The scattering images were taken by scanning the sample with the piezo stage across a 50 μm 
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pinhole located at the first image plane of the microscope and the scattering signal was detected 

by the avalanche photodiode detector. A LabView interface was designed to synchronize the 

stage movement and the data acquisition. A typical image was composed of 128 x 128 pixels 

with an integration time of 5 ms/pixel. Single-nanoribbon spectra were collected by positioning 

the particle of interested over the pinhole and then guiding the light toward the CCD camera. All 

measured single-nanoribbon spectra were corrected for the background scattering and 

normalized by the intensity of the excitation light. 

 Single-nanoribbon CD measurements were performed when a polarizer followed by a 

quarter-waveplate were placed before the dark-field condenser. Left-handed and right-handed 

circular polarization was controlled with the fast axis of the quarter-waveplate set to -45deg and 

45deg with respect to the axis of the polarizer, respectively. The CD spectrum was calculated by 

subtracting the scattering spectrum for right-handed circular polarization from that taken with 

left-handed circular polarization.   

In our previous work, a correction procedure was developed for single particle CD 

measurements and applied here for any slight deviations from perfectly circular polarization of 

the incident radiation at the sample based on CD measurements of randomly orientated single 

gold nanorods. (5) In the context of this study they can be considered to be  achiral and thus 

should have no CD signal We find that ellipticity in the polarization of the excitation light gives 

rise to artifact CD signals of the gold nanorods as a function of their relative orientation with 

respect to the major/minor axes of elliptically polarized light. Measurement of numerous gold 

nanorods at different orientations, determined first by taking linearly polarized spectra, allowed 

us to construct a correction factor for our single particle scattering CD measurements. We 
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applied this orientation-dependent correction factor to the nanoribbons. To further test the 

validity of this procedure for the system studied here we collected single particle CD spectra of 

the same nanoribbon as a function of its orientation by rotating the sample. The results are shown 

in Figure S13 and the independence of the CD spectra on nanoribbon orientation illustrate that 

our correction procedure eliminates artifacts in the CD spectra originating from non-perfect 

circular polarization. It should further be noted that this correction procedure specifically 

addresses deviations from circular polarized excitation light, while using a condenser to excite 

the sample ensured that light was incident from all angles, effectively averaging the CD response 

over all orientation and establishing an important correspondence to ensemble measurements in 

solution 

Single nanoribbon extinction measurements were performed using a microscope setup, in 

which light from a lamp at normal incidence was focused on the sample using an objective. 

Comparison between the light intensity collected with and without the nanostructure of interest 

present in the observation area yielded the extinction. All data analysis was carried out using 

MatLab software. 

Simulation of chiroptical properties:  Optical activities of chiral structures were 

computationally simulated using a COMSOL Multiphysics software package with wave-optics 

module. Computational models for twisted ribbons used in the simulations were based on the 

experimental data obtained from SEM, TEM and AFM (Figs. 1 and 2). The model twisted 

ribbons had a width, thickness, and pitch length of 100 nm, 10 nm, and 300 nm, respectively.  

Optical constants of CdS were adapted from Ref (6). 
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The g-factors obtained for single nanoribbons can be compared to those reported for 

small organic molecules after plasmon enhancement g = 0.005 (7-9), assembled gold NPs on 

DNA g = 0.02 (10), polyaromatic compounds g = 0.05 (11), and protein complexes g = 0.06 

(12).  

For simulation of chiroptical properties, the COMSOL models of NPs were created.  To 

simulate random orientation, CD values are calculated from average of directional CDs with 

light propagating directions of two spherical angles, θ (0 to π) and φ (0 to 2π) with a step of π/6.  

The environment was water (n=1.33). Characteristic optical constants of CdTe NPs were 

obtained from Ref (13). 

CdTe NPs were truncated along three apexes but in different positions to create chiral 

geometry (Figs. 3G-3I). For an L-type nanoscale cluster, four truncated NPs were arranged in 

space accordingly. The sizes of each NP were scaled as 0.75, 1, 1.1, and 1.2 to reflect the 

polydispersity of NPs. The L-cluster was mirrored to the plane of x = 0 to obtain an R-cluster.  

 

E-DLVO calculations:  

Interaction potential (E-DLVO) between nanoparticles 

The extended DLVO interaction energies between nanoparticles were approximated by the 

following expression: 

ாܸ஽௅௏ை = ௏ܸௗௐ + ஽ܸ௅ + ஽ܸ௉  , 
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 where ௏ܸௗௐ, ஽ܸ௅, ஽ܸ௉ are van der Waals (VdW), double electric layer (DL) , and dipole-dipole 

(DP) interaction potentials, respectively. 

Van der Waals interaction potential 

Van der Waals potential approximated as additive contributions of London dispersion forces 

between CdTe NPs capped with a shell of TGA can be evaluated as follows (14, 15): 

																							 ௏ܸௗௐ = ௏ܸௗௐ,௦௛௘௟௟ + ௏ܸௗௐ,௖௢௥௘ + ௏ܸௗௐ,௖௢௥௘ି௦௛௘௟௟ + ௏ܸௗௐ,௦௛௘௟௟ି௖௢௥௘  , 

where  

௏ܸௗௐ,௦௛௘௟௟௟ = ି஺మయమுೞ೓೐೗೗(௠,௡)ଵଶ    :  ݉ = ௫ଶ(ோ಴೏೅೐ାௗ)   , ݊ = 1   

௏ܸௗௐ,௖௢௥௘ = ି஺భయభு೎೚ೝ೐(௠,௡)ଵଶ   :  ݉ = ௫ାଶௗଶோ಴೏೅೐   ,  ݊ = 1 

௏ܸௗௐ,௖௢௥௘ି௦௛௘௟௟ = ି஺భయమு೎೚ೝ೐షೞ೓೐೗೗(௠,௡)ଵଶ    :   ݉ = ௫ାௗଶோ಴೏೅೐   ,  ݊ = ோ಴೏೅೐ାௗோ಴೏೅೐  

௏ܸௗௐ,௦௛௘௟௟ି௖௢௥௘ = ି஺భయమுೞ೓೐೗೗ష೎೚ೝ೐(௠,௡)ଵଶ    :   ݉ = ௫ାௗଶ(ோ಴೏೅೐ାௗ)   ,  ݊ = ோ಴೏೅೐ோ಴೏೅೐ାௗ 

The Hamaker function, H(m,n), is given by: 

,݉)ܪ ݊) = ௡௠మା௠௡ା௡ + ௡௠మା௠௡ା௠ା௡ + 2ln ቂ ௠మା௠௡ା௠௠మା௠௡ା௠ା௡ቃ , 
 

where ݔ  is the shortest distance between the TGA-capped CdTe NPs, ଵଷଵܣ	  is the Hamaker 

constant of CdTe interactions in water (4.85 x 10-20 J, value of closely CdS NPs (16, 17) was 

used),  ܣଶଷଶ  is the Hamaker constant of TGA interactions in water (5 x 10-21 J, which 
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approximates interactions between hydrocarbon chains in water (18-20)), ܣଵଷଶ relates CdTe and 

TGA in water. and was approximated from the following relation (18) : 

ଵଷଶܣ = (ඥܣଵଵ − ඥܣଷଷ)(ඥܣଶଶ − ඥܣଷଷ)  , 
where ܣଵଵ = 11.4 × 10ିଶ଴J , value of CdS in air (21), ܣଶଶ = 7 × 10ିଶ଴J (20),  ܣଷଷ = 3.72 ×10ିଶ଴J (18).   ܴ஼ௗ்௘ =5 nm is the radius of CdTe NPs, ݀= 0.76nm, is the thickness of the TGA 

layer around the NPs.(22) 

 

Electrostatic potential associated with double electrical layer 

The electrostatic interactions between the NPs can be evaluated using the Poisson-Boltzmann 

formalism as follows (23-26):  

஽ܸ௅ = ௥(ܴ஼ௗ்௘ߝ௢ߝߨ4 + ݀)ଶΓଶ ቀ௞ಳ்௘ ቁଶ ୣ୶୮	(ି఑௫)௫ାଶ(ோ಴೏೅೐ାௗ) ,  where 

Γ = ଼∗୲ୟ୬୦	(೐ഗ಴೏೅೐ష೅ಸಲరೖಳ೅ )
ଵାඨଵି మഉ(ೃ಴೏೅೐శ೏)శభ(ഉ(ೃ಴೏೅೐శ೏)శభ)మ ୲ୟ୬୦మ(೐ഗ಴೏೅೐ష೅ಸಲరೖಳ೅ )  , 

where ߝ଴ is the permittivity of vacuum,  ߝ௥ is the dielectric constant of water and	߰஼ௗ்௘ is the 

zeta potential of CdTe-TGA(-6mV) NPs . ߢ, the reciprocal double layer thickness (Debye length), 

is given by  

κ = ටଵ଴଴଴ேಲ௘మఌೝఌబ௞ಳ் ∑ ௜ܯ × ܼ௜ଶ௜ , 
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where ݁ is electric charge (in Coloumbs), ஺ܰ  is Avogadro’s number, ܯ௜  and ܼ௜  are the molar 

concentration and valency of ions, respectively.  The practical Debye length of water is taken to 

be ିߢଵ ≈ 100 nm (27-29).  

 

Dipole-Dipole Interactions  

Dipole-dipole interaction potential is approximated by the following (24, 25): 

                                                ஽ܸ௉ = ିఓ಴೏೅೐మଶగఌ೚ఌೝ ∗ 	 ଵ௥(௥మିସோ಴೏೅೐మ ), where  

ݎ                                                 = ݔ + 2݀ + 2ܴ஼ௗ்௘  

Here, ߤ஼ௗ்௘ , the dipole moment of CdTe NPs, is taken to be 100 D based on the data reported in 

(30, 31).   

Interaction between “naked” CdS NPs: 

E-DLVO between CdS NPs  

Only the interactions between the CdS NP cores are present in this case because the TGA shell 

was destroyed during the illumination (see Fig. 3 and Figs. S16-S27). Therefore, distance 

consideration related to the thickness of the stabilizer layer as opposed to the case of CdTe-TGA 

NPs, is not required.  

௏ܸௗௐ(ܵ݀ܥ, (ܵ݀ܥ
= ଵଷଵ6ܣ− ቆ 2ܴ஼ௗௌଶ2ܴ஼ௗௌݔ + ଶݔ + 2ܴ஼ௗௌଶ4ܴ஼ௗௌଶ + 4ܴ஼ௗௌݔ + ଶݔ + ݈݊ ቈ 4ܴ஼ௗௌݔ + ଶ4ܴ஼ௗௌଶݔ + 4ܴ஼ௗௌݔ +  ଶ቉ቇݔ



11 
 

 

஽ܸ௅ = ௥ܴ஼ௗௌଶΓଶߝ௢ߝߨ4 ቀ௞ಳ்௘ ቁଶ ୣ୶୮	(ି఑௫)௫ାଶோ಴೏ೄ   , 

 where  

Γ = ଼∗୲ୟ୬୦	(೐ഗ಴೏ೄరೖಳ೅ )ଵାඨଵି మഉೃ಴೏ೄశభ(ഉೃ಴೏ೄశభ)మ ୲ୟ୬୦మ(೐ഗ಴೏ೄరೖಳ೅ ),        ߰஼ௗௌ = −15mV 

஽ܸ௉ = ିఓ಴೏ೄమଶగఌ೚ఌೝ ∗ 	 ଵ௥(௥మିସோ಴೏ೄమ ) , 
where  

ݎ = ݔ + 2ܴ஼ௗௌ , ߤ஼ௗ்௘ =  .஼ௗௌߤ

 

Atomistic computer simulations of the assembly of chiral NPs  

The modeled NPs have side length of 3.6 nm (10 Cd layers), and they are made of 

cadmium and sulfur atoms in F43m space group arrangement with a lattice constant of a = 0.582 

nm (layer-to-layer distance = 3.16 A). 2, 3, and 4 layers are cut from three of the four vertices to 

give the NP chirality. Fig. 4A shows a model NP with left and right handedness, respectively. 

The sulfur atoms are colored based on the number of bonding neighbors and their partial charges 

are assigned based on that.  The partial charges was assigned as 0.4e to cadmium atoms, 0.0655e 

to sulfur with 1 bonding neighbor (S1), -0.185e to S2, -0.35e to S3, and -0.4e to S4. 
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The NPs were assembled into a flat layer and the structure was solvated in water. The 

NPs were subsequently charged by homogeneously distributing the charges to all atoms of the 

NP. Chloride ions were added to the water to neutralize the NP net charges. We simulated the 

systems in the NAMD software with CHARMM force field under the condition of periodic 

boundary, isothermal–isobaric (Gibbs) ensemble at T = 300 K maintained by Langevin dynamics 

with a damping coefficient of γLang = 0.01 ps−1, and long range electrostatic computed using 

particle mesh Ewald  (PME) summation. Furthermore, we added bulk VdW coupling to the NPs 

(beyond the normal VdW cutoff distance) by adding forces to the center of all NPs. Averaged 

twist angle of the nanoribbons was calculated from the last ~ 5-10 ns of the simulation trajectory. 

 

ADDITIONAL FIGURES AND COMMENTS 

Comment 1: Self-assembly intermediate stages. The CdTe NPs aqueous dispersion with a 

concentration of 0.35 μM was irradiated with RCP or LCP with the intensity of 30 μW, which 

were lower than the parameters of the previous work, 5 μM and 61 μW respectively (1). Contrast 

to the dog-bone shaped NPs intermediate stages in the Ref. 29, with our experiment conditions 

demonstrated in this paper, NPs were assembled into twisted nanoribbons individually, not the 

bundled structures (Figs. 1A and 1B).  

Comment 2: After illumination with light for 96 h, some nanoribbons became thinner but the 

twisted geometry was preserved (Fig. S2). NPs that did not successfully assemble into 

nanoribbons, agglomerated into randomized aggregation. Thus, the supernatant from 

nanoribbons dispersion rarely had absorbance signal (Fig. S15). Contrast to the light activated 

procedure, the NPs dispersion retained its absorbance signal in the dark. 
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Comment 3: Compared to exposure of 543 nm light, when we used 607 nm wavelength as a light 

source, the efficiency of chiral selective activation was significantly reduced. The non-activated 

NPs were dominant around the nanoribbons (Fig. S10). These results indicate that effective 

absorption of light is important for the efficiency of chiral self-assembly of NPs.   

Comment 4:  Phase transition from CdTe to CdS. The characteristic UV-Vis absorption peak 

of TGA at 276 nm decreased continuously as we increased the illumination time (Fig. S16). With 

the analysis of FTIR spectra from original NPs, purified nanoribbons, and supernatant, we found 

that typical TGA peaks at 3500 cm-1, 1567 cm-1, and 1421 cm-1, respectively, were significantly 

decreased in nanoribbons compared to the original CdTe NPs (Fig. 3A). A peak from vas(COO-) 

of carboxyl moieties was observed in the supernatant, indicating TGA decomposition. XPS 

spectra of original CdTe NPs and nanoribbons obtained in the S 2p region had peaks at 164.8 eV 

from thiol groups and 161.6 eV from S in CdS respectively (Fig. S17). In Te 3d region, CdTe 

NPs show peaks at 572.7 eV and 583.5 eV, corresponding to 3d levels of Te in CdTe (Fig. S18). 

The nanoribbons revealed XPS peaks at 576.2 eV and 586.5 eV corresponding to TeO2.  They 

indicated that illumination resulted in (expected) oxidation of Te2- to Te4+.(1)  Besides XPS, the 

atomic composition of the nanoribbons was also investigated by energy dispersive spectroscopy 

(EDS) in TEM. The nanoribbons selected by the dark-field TEM (Fig. S22) were imaged for the 

presence of Cd, S, and Te. The EDS element maps in Fig. S26 show that the intensity from Cd 

(green) and S (blue) was significantly higher than that from Te (red).  The same conclusion can 

be reached for line-scanned EDS spectra (Fig. S23).  In addition, the absorption peaks of CdTe 

NPs showed a gradual blue shift from 532 nm to 510 nm instead of the typical red shift of optical 

features found in many other NPs assemblies (Fig. S27). The blue shift in our case is associated 
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Figure S5. CD (A, B and C) and UV-Vis absorption spectra (D, E, and F) of LH nanoribbons 
and supernatant after illumination of 12h, 28h, and 36h, respectively. 
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Figure S6. UV-Vis absorption spectra of RH nanoribbons corresponding to Fig. 1F. 

 

Figure S7. CD spectra of nanoribbons synthesized under UnP, LinP and in the dark. 
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Figure S8. Absorption spectra of nanoribbons synthesized under UnP, LinP and in the dark. 

 

Figure S9. SEM images of nanoribbons self-assembled under UnP (A) and LinP (B). Both scale 

bars are 1 μm. The population of nanoribbons were significantly lower than NPs. 
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Figure S10. SEM image of nanoribbons after exposure to 603 nm LCP light for 50 h. Blue, red 
and yellow arrows indicate LH, RH and non-twisted nanoribbons respectively. With total 15 
wires in the image, 46.6 % LH, 26.7 % RH, and 26.7 % non-twisted nanoribbons are observed.  

 

 

Figure S11. Extinction (blue) and scattering spectra (red) of a single nanoribbon assembled 
under LCP for 50 h. 
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Figure S15. UV-Vis absorption spectra of supernatant separated by centrifugation from 

nanoribbons obtained with LCP (blue), RCP (red) illumination, or incubation in the dark (black) 

for 96 h. As shown in SEM images (Fig. S4), NPs present in dispersions aggregate around 

nanoribbons as a result of centrifugation, so that few NPs remain in the supernatant. Without 

exposure of light, NPs were well-dispersed in the solution.   
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Figure S24. EDS data of RH nanoribbon obtained after 50 h of illumination time. 

 

 

 

Figure S25. EDS spectra from CdTe NPs.   
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Figure S30. Pair potential calculated based on E-DLVO theory for TGA capped CdTe NPs and 

surface ligand-free (“naked”) CdS NPs.  
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Figure S32. Simulated extinction spectra for L/R-NPs. The graphs were superimposed. 

 

Figure S33. Simulated extinction spectra forL/R-clusters. The graphs were superimposed. 
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