Web Appendix 1
A note about the interventions

The interventions considered here are known as “representative” interventions.' They are
mathematically equivalent to re-assigning each person-year with exposure above the binary cutoff to an
exposure below the binary cutoff at random according to the observed distribution of exposures below

the binary cutoff.
G-estimation details and confidence intervals

The analysis was based on the following structural accelerated failure time model:

T

Ts = [, exp[pA(®)] dt (1)

where T is observed survival time, A(t) is observed exposure at time t, Ty is the counterfactual survival
time if never exposed, and 1 is the unknown coefficient to be estimated.>> G-estimation of 1) was
achieved by solving an estimating equation (see Hernan et al, 2005%) using a binary grid search within
the search interval -0.9 to 0.9, a range that included all plausible (and many implausible) values for the

coefficient.

It would have taken prohibitively long to run 1000 bootstrap samples from which to construct non-
parametric, quantile-based confidence limits. We instead assumed the bootstrap estimates to be
normally distributed, and used the standard deviation of the 200 bootstrap estimates to compute the
confidence interval for each outcome and exposure cutoff. The confidence limits reported are equal to
the point estimate plus or minus 1.96 times the standard deviation of the bootstrap estimates. Most of

these confidence limits were qualitatively quite similar to the non-parametric confidence intervals (not



shown) obtained by using the 2.5th and 97.5th percentiles of the bootstrap estimates as the lower and

upper limits of the 95% confidence interval.

For some bootstrap samples, g-estimation failed to produce an estimate within that interval. For
example, this could happen when too few cases who had ever (or never) been exposed above the cutoff
were selected into the sample. Since we had fewer than 200 bootstrap estimates, using the standard
deviation to calculate confidence limits was inappropriate. Thus, for each cutoff where at least one
bootstrap sample (but fewer than 5% of them) failed to produce an estimate, the minimum and
maximum estimates were reported instead of adding and subtracting 1.96 times the standard deviation,
yielding a possibly conservative confidence interval. This occurred only in the analyses of

cerebrovascular disease, for cutoffs 0.05mg/m?, 0.1mg/m?, and 0.15mg/m?>.

Effect measure estimated

The coefficient 1 represents the log of the ratio of the median survival time that would have been
observed if all workers had been exposed for the entire duration of follow-up to the median survival
time if all workers had never been exposed. However, this interpretation is not very meaningful in our
application: the autoworkers cohort includes follow-up after the end of employment, when exposure
can no longer occur, so that “always exposed” is an unrealistic scenario. We reported estimates for a
different effect measure derived from the same coefficient: the sum over all deaths from the cause of
interest of the difference Tg — T, where Tj is calculated for each person from the accelerated failure
time model (equation (1)) using the g-estimate of 1. Thus, we use the estimate of i to calculate the
impact of each intervention within the subgroup of the cohort that experienced the outcome of interest

during follow-up.

Administrative censoring



Since the autoworkers cohort was not followed until all workers had died, administrative censoring
would cause bias in the absence of proper adjustment, because survival to the administrative end of
follow-up may depend on exposure. We adjusted by artificially censoring those workers whose death
from the cause of interest would have been unobserved under at least one possible exposure scenario,
as described in the references.”® For most analyses, fewer than 5% of the observed deaths were
artificially censored, though more artificial censoring was necessary for cerebrovascular disease than for
the other outcomes. For each cutoff, Table Al displays the number and percent of deaths from each

cause that were not artificially censored.

Our analysis only includes those workers whose outcome would have been observed under all
exposure histories. Thus, under the assumptions described in the Discussion, our g-estimates of 1 are
unbiased, and can be thought of as representing the etiologic effect. For each analysis, we then used the
g-estimate to calculate the estimated total number of years of life saved among all individuals whose
deaths from the cause of interest were observed during the study period, including those artificially
censored in the g-estimation step (even though some of those saved life years were after the
administrative end of follow-up). Those who were administratively censored (that is, who were still alive
at the end of follow-up) were not included in this sum. Different workers may have been artificially
censored in the analyses of different cutoffs. Including the artificially censored cases was therefore
necessary in order to obtain comparable estimates for different cutoffs, since our sums must refer to

the same population for all cutoffs.

Non-administrative censoring

We adjusted for loss to follow-up (<4%) and censoring by death from competing risks (13% for
cardiovascular disease overall, 17% for IHD, 20% for AMI, and 23% for cerebrovascular disease) using

inverse probability of censoring weights.” We used stabilized weights equal to the predicted marginal



probability of remaining uncensored divided by the predicted conditional probability of remaining
uncensored. The conditional probability of being uncensored at each time was obtained from a pooled
logistic model using the following predictors: race, sex, current age and age at baseline (both linear),
plant, an indicator for the year being before 1970 (when exposures were dramatically reduced), both
current and previous exposures to all three fluid types as described in the text for the model predicting
exposure, and intermittent time off work. For all outcomes and cutoffs, the weights were moderate

(total range: 0.88 to 1.44) and did not require truncation.

Our use of inverse probability weighting to adjust for competing risks gives our results for cause-specific
mortality a somewhat odd interpretation: we estimate the impacts of interventions as if it were
impossible to die from causes other than cardiovascular disease (or ischemic heart disease, or acute
myocardial infarction, or cerebrovascular disease). This scenario is unrealistic, but it is the only way to
avoid assuming that death from competing risks is uninformative within the context of g-estimation of
an accelerated failure time model. However, a sensitivity analysis without adjustment for competing
risks (that is, without using inverse probability weights to adjust for competing risks) yielded very similar

estimates, most of which were slightly higher.

All-cause vs. cause-specific mortality

The accelerated failure time model in Equation 1 relates counterfactual unexposed survival time to
observed exposure and observed survival time via an unmeasured coefficient that can be thought of as
the log of the “acceleration factor”. Exposure speeds up (or slows down) the time to event, rather than
increasing (or decreasing) one’s probability of experiencing the outcome. For this reason, the
accelerated failure time model is very well-suited to studying all-cause mortality. To illustrate this point,
we ran an analysis of all-cause mortality using the same exposure cutoffs. No weights (or assumptions)

were needed to adjust for competing risks, since there were none, though we did use weights to adjust



for loss to follow-up. In this analysis, the coefficient 1) from the main analysis represents the log of the
factor by which exposure accelerates death in the cohort; this etiologic measure applies to the entire

cohort.

For cause-specific mortality, the coefficient Y from the main analysis represents the log of the factor by
which exposure accelerates death from that cause in a pseudo-population in which death from other
causes is impossible. The sensitivity analysis without weights for competing risks yields a coefficient
representing the log of the factor by which exposure accelerates death from that cause in the cohort,
under the assumption that those censored due to death from other causes either (a) share the same
distribution of exposure history with or (b) have the same underlying susceptibility to the outcome of
interest as those who died of the cause of interest. This complicated interpretation of 1 provides a
further motivation for presenting the results as impacts of interventions within subgroups defined by

observed outcomes.

Choice of g-methods

Another method that correctly handles time-varying confounding affected by prior exposure is the
parametric g-formula.? This method, rather than adjusting for competing risks, models the outcome,
competing outcomes, and all covariates as functions of prior values. Then, the models are used to
predict the data distribution under different exposure scenarios; competing outcomes can thus be
simulated, possibly giving a more realistic idea of the impact of an intervention. However, this method
requires making parametric modeling assumptions not only for the outcome but for every time-varying
covariate, which could result in substantial bias if those models are misspecified, especially if errors
propagate over a long follow-up period. Unlike g-estimation, the parametric g-formula is also subject to

the g-null paradox, meaning that results are expected to be biased in large samples.’



Marginal structural models with inverse probability of treatment weighting also adjust correctly for
time-varying confounding affected by prior exposure. However, that method gives biased results when
positivity is violated. Positivity, or experimental treatment assignment, is the assumption that all non-
empty strata of covariates include both exposed and unexposed individuals. Workers who are no longer
actively employed cannot be exposed, which represents a structural violation of positivity. G-estimation

of our structural model does not require positivity.
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Web Table 1. Number and percent of deaths not artificially censored.

All-cause Cardiovascular Cerebrovascular

(N=9539) disease (N=4153) IHD (N=2612) AMI (N=1699) disease (N=501)

Cutoff N % N % N % N % N %
0 9205 96 3988 96 2461 94 1606 95 460 92
0.01 9387 98 4056 98 2529 97 1641 97 461 92
0.02 9430 99 4092 99 2548 98 1664 98 466 93
0.03 9441 99 4112 99 2559 98 1666 98 473 94
0.04 9430 99 4127 99 2571 98 1681 99 490 98
0.05 9458 99 4143 100 2579 99 1684 99 500 100
0.10 9470 99 4123 99 2569 98 1679 99 459 92
0.15 9520 100 3971 96 2592 99 1695 100 333 66

IHD: ischemic heart disease; AMI: acute myocardial infarction



