¹ Supplemental Text S1

² Orientational Order Parameter (OOP)

The OOP characterizes the order of orientation of a single construct. For disordered systems the OOP is zero and for perfectly aligned systems it is one. The OOP is calculated by using a set of vectors, $\overrightarrow{p_i}$, and forming a tensor for each of the vectors. The mean tensor is:

$$\mathbb{T} = \left\langle 2 \begin{bmatrix} p_{i,x}p_{i,x} & p_{i,x}p_{i,y} \\ p_{i,x}p_{i,y} & p_{i,y}p_{i,y} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\rangle = \{Mean \ tensor\}.$$
(1)

⁶ The OOP is defined as the maximum eigenvalue of the mean tensor

$$OOP = \max\left[\text{eigenvalue}(\mathbb{T})\right] = \{Orientational \ order \ parameter\}$$
$$= \left\langle 2\{\overrightarrow{p_i} \cdot \hat{n_p}\}^2 - 1 \right\rangle = \left\langle \cos\left(2(\alpha - \alpha_0)\right) \right\rangle$$
(2)

 $_{7}~$ where $\hat{n_{p}}$ and α_{0} are the director and mean angle, respectively.

⁸ Symmetry of OOP

• The OOP also has pseudo-vector symmetry and this can be easily shown. To check for symmetry we need

to vary the sign of $\overrightarrow{p_i}$ and $\hat{n_p}$. If we change the sign of $\overrightarrow{p_i}$, $\hat{n_p}$ or both we obtain:

$$\left\langle 2\left\{-\overrightarrow{p_i}\cdot\hat{n_p}\right\}^2 - 1\right\rangle = \left\langle 2\left\{\overrightarrow{p_i}\cdot\left(-\widehat{n_p}\right)\right\}^2 - 1\right\rangle = \left\langle 2\left\{-\overrightarrow{p_i}\cdot\left(-\widehat{n_p}\right)\right\}^2 - 1\right\rangle = \left\langle 2\left\{\overrightarrow{p_i}\cdot\widehat{n_p}\right\}^2 - 1\right\rangle.$$
(3)

¹¹ Thus, we will produce the same OOP no matter the sign of $\overrightarrow{p_i}$ and $\hat{n_p}$ therefore the OOP is symmetric.

¹² Second order correlations

¹³ The OOP is not able to characterize second order correlations. To prove this define P as:

$$\overrightarrow{p_i} = \left[\cos(\frac{\pi}{2})), \sin(\frac{\pi}{2})\right] \text{ and } \overrightarrow{p}_{i+n} = \left[\cos(-\frac{\pi}{2}), \sin(-\frac{\pi}{2})\right]$$
(4)

14 for i = 1, ..., n. Thus, $(\hat{n}_p = 0 \text{ and } \alpha_0 = 0)$:

$$OOP_P = \sum_{i=1}^{2n} \cos(2\alpha) = n \cdot \cos\left(2\frac{\pi}{2}\right) + n \cdot \cos\left(2\left(-\frac{\pi}{2}\right)\right) = 0.$$
(5)

¹⁵ Thus, OOP=0 even though there is obvious organization in P.

¹⁶ Circular Statistics (assume period of π)

¹⁷ It is possible to show that the R of circular statistics [1] is the same as the OOP. If the data is distributed:

$$\alpha = \frac{2\pi x}{k} \tag{6}$$

- where, x is the data in the original scale, k is the total number of steps on the x scale, and α is the
- ¹⁹ variable on the new directional scale (i.e. with a standard 2π period). In our case a rod that is β degrees
- ²⁰ away from the director is physically the same rod as the one $\beta + \pi$ degrees away. Therefore in our case
- ²¹ $k = \pi$ and:

$$\alpha = 2\theta \tag{7}$$

where, θ is defined as the angle that we measured from the director. From this it follows:

$$S = \frac{1}{N} \sum_{i=1}^{N} \sin 2\theta_i \tag{8}$$

$$C = \frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i \tag{9}$$

$$R = \sqrt{S^2 + C^2}.\tag{10}$$

- If we assume that the director is orientated such that $\theta_{\hat{n}} = 0$, then the angles are evenly distributed
- between positive and negative and therefore S = 0. We can then write R as:

$$R = C = \frac{1}{N} \sum_{i=1}^{N} \cos 2\theta_i = \langle \cos 2\theta_i \rangle.$$
(11)

- Therefore, by definition of the director we will have the range 0 < R < 1 and it is equivalent to the
- ²⁶ $OOP = 2\langle \cos^2 \theta_i \rangle 1 = \langle \cos 2\theta_i \rangle = R.$

27 Circular Correlation

- ²⁸ In the special case, with both constructs having a uniform distribution, i.e. both being perfectly isotropic,
- ²⁹ the correlation coefficient and COOP converge to the same equation. If the angles are uniformally dis-
- ³⁰ tributed on the circle the correlation coefficient [2] can be written as

$$r = \sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}\cos 2\theta_i\right)^2 + \left(\frac{1}{N}\sum_{i=1}^{N}\sin 2\theta_i\right)^2} \tag{12}$$

- where θ represents the angle between two biological constructs. If the director is to be assumed $\hat{n} = [1, 0]$
- then $\langle \sin 2\theta_i \rangle = 0$, and therefore

$$r = \sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}\cos 2\theta_i\right)^2} = \langle \cos 2\theta_i \rangle.$$
(13)

Thus, $COOP = 2\langle \cos^2 \theta_i \rangle - 1 = \langle \cos 2\theta_i \rangle = r.$

34 References

- 1. Berens P (2009) Circstat: A matlab toolbox for circular statistics. J Stat Softw 31: 1-21.
- 2. Batschelet E (1981) Circular Statistics in Biology. London: Academic Press, 371 pp.