

Supplementary Figure 1. $F(ab')_2$ fragments of anti-human IgM do not modulate DC phenotype. Immature DCs $(0.1 \times 10^6 \text{ cells}/200 \ \mu\text{l/well})$ with GM-CSF and IL-4 were cultured either alone (DC_{ctrl}) or $F(ab')_2$ of goat anti-human IgM (10 μ g/ml) (DC_{BCR}) or co-cultured at 1:1 ratio with CD19⁺ B cells that were directly activated in DC-B cell co-culture via BCR stimuli using $F(ab')_2$ of goat anti-human IgM (10 μ g/ml) (DC_{BCR-B}) for 48 hours. (a-d) Phenotypic analysis (% positive cells and MFI) of CD20-negative cells was done by flow cytometry. Mean \pm s.e.m of data from 10 donors. ****P* <0.001; ns, not significant by one way analysis of variance test.

Supplementary Figure 2. Comparison of DC activation capacity of B cells stimulated with various stimuli. Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured with CD19⁺ B cells that were pre-activated by BCR (DC_{pBCR-B}) or CD40 (DC_{pCD40-B}) or BCR+CD40 (DC_{pBCR+CD40-B}) stimulation. (a and b) Phenotypic analysis (% positive cells and MFI) of DCs that were gated negative for CD20. Mean \pm s.e.m of data from 5 donors. **P* <0.05; ***P* <0.01; ****P* <0.001; ns, not significant by one way analysis of variance test.

a

Supplementary Figure 3. Pre-activated live and paraformaldehyde-fixed B cells are capable of triggering maturation of DCs. Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured with live CD19⁺ B cells pre-activated by BCR (DC_{pBCR-B}) or paraformaldehyde-fixed BCR-activated B cells (DC_{PFA:pBCR-B}). Phenotypic analysis of DCs that were gated negative for CD20 was done by flow cytometry. Mean \pm s.e.m of data from 6 different donors. **P* <0.05; ***P* <0.01; ****P* <0.001 by one way analysis of variance test.

Supplementary Figure 4. Secretion of chemokines by B cells and DCs. (a) $CD19^+$ B cells were either cultured alone (B_{ctrl}) or in the presence of BCR (B_{BCR}) or BCR+CD40 (B_{BCR+CD40}) stimulation for 48 hours. Supernatants were analyzed for various chemokines. Mean±SEM of data from 5 donors. *, P<0.05 by one way-ANOVA test. (b) Immature DCs were cultured for 48 hours in the medium containing GM-CSF and IL-4 alone (DC_{ctrl}) or co-cultured at 1:1 ratio with CD19⁺ B cells that were either in resting phase (DC_{Rest-B}) or directly activated in DC-B cell co-culture via BCR stimuli (DC_{BCR-B}). CD20-negative DCs from B cell-DC co-culture were analyzed for the intracellular expression of chemokines, CXCL8 and CCL4 by flow cytometry. Representative plot and mean ± s.e.m of data from 4 donors. **P*<0.05; ***P*<0.01; ns, not significant by one way analysis of variance test.

Supplementary Figure 5. DCs gain ability to induce proliferation of CD4⁺ cells and secretion of T cell cytokines only when they receive activation signals from B cells that are in direct contact with DCs. (a-c) Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or with CD19⁺ B cells pre-activated by BCR (DC_{BCR-B}) or BCR+CD40 (DC_{pBCR+CD40-B}) stimulation. (a) Co-culture was done either in U-bottomed 96 well plates to allow direct contact between DCs and B cells (Contact) or (b) in trans-well plate to separate the B cells from DCs (Transwell). (c) In addition, immature DCs were cultured in the supernatants from activated B cells (Supernatant). DCs were purified from B cell-DC co-culture by depleting B cells. CD4⁺ T cells were co-cultured with DCs at various ratios for 4 days. T cell proliferation (upper panels) was determined by [³H] incorporation assay and values are expressed as counts per minute (cpm). Values are mean±SEM of data from quadruplicate wells and representative of 3 independent experiments. Supernatants from DC-T cell co-cultures at 1:20 ratio were analyzed for IL-2 (lower panels). Mean ± s.e.m of data from 4 donors. **P* <0.05; ****P* <0.001; ns, not significant by one way analysis of variance test.

Supplementary Figure 6. DCs activated by B cells stimulated with various stimuli favor polarization of naive CD4⁺ T cells to Th2 cells. Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured at 1:1 ratio with CD19⁺ B cells that were pre-activated by BCR (DC_{pBCR-B}) or CD40 (DC_{pCD40-B}) or BCR+CD40 (DC_{pBCR+CD40-B}) stimulation. DCs were purified from B cell-DC co-culture by depleting B cells. CD4⁺CD45RO⁻ naive Th cells were co-cultured with control DCs (T_{ctrl-DC}) or B cell-matured DCs (T_{pBCR-B-DC} or T_{pBCR+CD40-B-DC} or T_{pCD40-B-DC}) at the ratio of 20:1 for 6 days. (a) CD3⁺ T cells were analyzed for the surface phenotype and intracellular expression of Ki-67 by flow cytometry. (b) After 6 days, supernatants from DC-T cell co-cultures were analyzed for T cell cytokines. (c) Flow cytometric analysis of transcription factors expressed by CD3⁺ T cells co-cultured with DCs. Representative plot and mean ± s.e.m of data from 6 donors. **P* <0.05; ***P* <0.01; ****P* <0.001; ns, not significant by one way analysis of variance test.

Supplementary Figure 7. Comparison of DC phenotype and Th2 polarizing capacity of B cell-matured DCs versus TSLP-treated DCs. Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured at 1:1 ratio with CD19⁺ B cells that were pre-activated by BCR (DC_{pBCR-B}) or CD40 (DC_{pCD40-B}) or treated with TSLP (20 ng/ml) (DC_{TSLP}). B cell-matured DCs were purified from the DC-B cell co-cultures by depleting B cells. (**a-c**) Expression of various markers (% positive cells and MFI) and of OX-40L (% positive cells) on DCs that were gated negative for CD20. (**d**) CD4⁺CD45RO⁻ naive Th cells were co-cultured at the ratio of 20:1 for 6 days with control DCs (T_{ctrl-DC}) or B cell-matured DCs (T_{pBCR-B-DC}) or with TSLP-DC (T_{TSLP-DC}). CD3⁺ T cells were analyzed for the surface phenotype and intracellular expression of Ki-67 and transcription factors by flow cytometry. (**e**) After 6 days, supernatants from DC-T cell co-cultures were analyzed for T cell cytokines. (**f**) Flow cytometric analysis of transcription factors expressed by CD3⁺ T cells co-cultured with DCs. Representative plot and mean \pm s.e.m of data from 4 donors. **P* <0.05; ***P* <0.01; ****P* <0.001; ns, not significant by one way analysis of variance test.

Supplementary Figure 8. Th2-mediated IgE production in B cells induced by B cell-matured DC and TSLP-DC. Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured at 1:1 ratio with CD19⁺ B cells that were directly activated in DC-B cell co-culture via BCR stimuli (DC_{BCR-B}) or treated with TSLP (20 ng/ml) (DC_{TSLP}). (a) Experimental design for Th2-mediated IgE production in B cells. B cell-matured DCs were purified from the DC-B cell co-cultures by depleting B cells. CD4⁺CD45RO⁻ naive Th cells were co-cultured at the ratio of 20:1 for 6 days with control DC (T_{ctrl-DC}) or B cell-matured DC (T_{BCR-B-DC}) or with TSLP-DC (T_{TSLP-DC}). CD3⁺ T cells separated by DC-T cell co-culture were cultured with fresh CD19⁺ B cells at the ratio of 2.5:1 for 12 days. (b) Supernatants from B cells that were cultured alone (B_{ctrl}) or co-cultured with T cells that were differentiated by control DC (B_{ctrl-DC-T}) or B cell-matured DC (B_{BCR-B-DC-T}) or TSLP-treated DC (B_{TSLP-DC}) were analyzed for the amounts of secreted IgE by ELISA. Mean values are presented by horizontal lines. Data are from 3 donors. ns, not significant by one way analysis of variance test.

Supplementary Figure 9. Comparison of B cell stimulation by CD40 and CD40L+IL-4 and subsequent DC maturation. (a, b) CD19⁺ B cells were either cultured alone (B_{ctrl}) or in the presence of agonistic CD40 antibody (B_{CD40}) alone or CD40L+IL-4 (B_{CD40L+IL-4}) for 2 days. Expression of surface activation markers was analyzed by flow cytometry. Mean \pm s.e.m of data from 5 donors. (c) Immature DCs were cultured in medium containing GM-CSF and IL-4 for 48 hours either alone (DC_{ctrl}) or co-cultured with CD19⁺ B cells that were pre-activated by agonistic CD40 antibody (DC_{pCD40-B}) or CD40L+IL-4 (DC_{pCD40L+IL-4-B}) stimulation. Expression of surface activation markers on JCs was analyzed by flow cytometry. Mean \pm s.e.m of data from 4 donors. **P* < 0.05; ***P* < 0.01; ****P* < 0.001; ns, not significant by one way analysis of variance test.