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Text S1

Here we provide proofs of the theoretical results mentioned in the Methods section of the main
text.

Lemma 1. To order O(r + 1
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Proof of Lemma 1. By direct computation using the moment generating function of the multino-
mial distribution, we find that
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The results now follow by induction.

Corollary 2. To order O(r + 1
2N ),
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Proof of Corollary 2. The formula is obtained by considering the conditional expectation
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t | Zt−1), inducting on t and checking cases for i and j. We illustrate the proof for

the case i = j = 1 and omit the lengthy but routine computations used to check the remaining
cases. (A Mathematica notebook which checks all cases is available from the authors upon request.)
With i = j = 1 we have
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This yields the claim for t = 1. Taking expectation and applying the preceding lemma, we find
that
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Applying the inductive hypothesis, we obtain
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which agrees with the claim after some simplification.
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