Supplementary Material For:

Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery

Sébastien Giguère¹*, François Laviolette¹, Mario Marchand¹, Denise Tremblay², Sylvain Moineau², Éric Biron³, Xinxia Liang³ and Jacques Corbeil⁴

1 Department of Computer Science and Software Engineering, Université Laval, Québec, Canada

2 Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Canada

3 Faculty of Pharmacy, Université Laval, Québec, Canada

4 Department of Molecular Medicine, Université Laval, Québec, Canada

* E-mail: Corresponding sebastien.giguere.8@ulaval.ca

Expected outcome of a library given a protocol

The proposed approach makes use of the graph $G^{h_{\mathbf{y}}}$, the protocol P, and a dynamic programming algorithm that exploits recurrences in the factorization of first and second order polynomials. This allows for the efficient computation of τ and β , respectively the first and second moment of $h_{\mathbf{y}}$ when peptides are drawn according to the distribution P:

$$\begin{split} \tau &\stackrel{\text{def}}{=} & \sum_{\mathbf{x}\in\mathcal{A}^l} P(\mathbf{x}) \cdot h_{\mathbf{y}}(\mathbf{x}) \\ \beta &\stackrel{\text{def}}{=} & \sum_{\mathbf{x}\in\mathcal{A}^l} P(\mathbf{x}) \cdot h_{\mathbf{y}}(\mathbf{x})^2 \,. \end{split}$$

Thus, the average and variance predicted bioactivity of peptides synthesized by the protocol are then respectively given by τ and $\beta - \tau^2$.

To compute these quantities efficiently, the dynamic programming algorithm, given in Algorithm 1, uses the following recurrence relations:

$$\sum_{i=1}^{n} x_i = x_n + \sum_{i=1}^{n-1} x_i , \qquad (1)$$

and

$$\left(\sum_{i=1}^{n} x_i\right)^2 = \left(\sum_{i=1}^{n-1} x_i\right)^2 + 2x_n \left(\sum_{i=1}^{n-1} x_i\right) + x_n^2.$$
(2)

Moreover, each node of the graph G^{h_y} has the following additional variables.

- $\boldsymbol{\tau}[s,i]$ for the expected length of paths from the source node λ to the node (s,i).
- $\beta[s,i]$ for the expected squared length of paths from the source node λ to the node (s,i).
- $\rho[s, i]$ is the probability of having the k-mers s at position i.

After the execution of Algorithm 1, the values of τ and β are respectively given by $\boldsymbol{\tau}[t]$ and $\boldsymbol{\beta}[t]$ for the sink node t.

Algorithm 1 Algorithm for computing split and pool synthesis statistics using G^{h_y} and \mathcal{P}

 $\boldsymbol{\tau}, \boldsymbol{\beta}, \boldsymbol{\rho}$: arrays with $n|\mathcal{A}|^k + 2$ entries initialized to 0 for all $s \in \mathcal{A}^k$ do \triangleright Edges leaving the source node $\begin{aligned} \boldsymbol{\tau}[s,1] &\leftarrow \mathcal{P}_1(s_1) W(s,1) \\ \boldsymbol{\beta}[s,1] &\leftarrow \mathcal{P}_1(s_1) W(s,1)^2 \end{aligned}$ $\boldsymbol{\rho}[s,1] \leftarrow \mathcal{P}_1(s_1)$ end for for $i = 2 \rightarrow n$ do for all $s \in \mathcal{A}^k$ do for all $a \in \mathcal{A}$ do \triangleright Visiting edge ((s, i - 1), (s', i)) $s' \leftarrow s_2, \ldots, s_k, a$ $\boldsymbol{\tau}[s',i] + = \mathcal{P}_i(s_2) \Big(\boldsymbol{\tau}[s,i-1] + \boldsymbol{\rho}[s,i-1] W(s',i) \Big)$ $\boldsymbol{\beta}[s',i] + = \mathcal{P}_i(s_2) \left(\boldsymbol{\beta}[s,i-1] + \boldsymbol{\rho}[s,i-1] W(s',i)^2 + 2\boldsymbol{\tau}[s,i-1] W(s',i) \right)$ $\boldsymbol{\rho}[s',i] + = \mathcal{P}_i(s_2) \boldsymbol{\rho}[s,i-1]$ end for end for end for $\begin{aligned} & \text{for all } s \in \mathcal{A}^k \text{ do} \\ & r \leftarrow \prod_{i=1}^{k-1} \mathcal{P}_{n+i}(s_{i+1}) \\ & \pmb{\tau}[t] + = r \Big(\pmb{\tau}[s,n] + \pmb{\rho}[s,n] W_t(s) \Big) \end{aligned}$ \triangleright Edges heading to the sink node $\boldsymbol{\beta}[t] + = r\left(\boldsymbol{\beta}[s,n] + \boldsymbol{\rho}[s,n]W_t((s,n),t)^2 + 2\boldsymbol{\tau}[s,n]W_t(s)\right)$ $\boldsymbol{\rho}[t] + = r \boldsymbol{\rho}[s, n]$ end for return $\boldsymbol{\tau}[t], \ \boldsymbol{\beta}[t] - \boldsymbol{\tau}[t]^2$ \triangleright Return average and variance

Peptide synthesis, bacterial strains and minimal inhibitory concentration assay

Peptides were synthesized on a Prelude Peptide Synthesizer (Protein Technologies Inc, AZ) using standard Fmoc solid phase peptide chemistry [1]. The synthesis was performed on Rink Amide AM resin and the amino acid couplings achieved with HCTU (2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate) and NMM (N-methylmorpholine). The peptides were cleaved from the resin using a mixture of 95% trifluoroacetic acid, 2.5% triisopropylsilane, 2.5% water for 3h at room temperature and precipitated in cold diethyl ether. After triturating for 2 min, the peptides were collected upon centrifugation and decantation of the ether. The peptides were purified on a Vydac C18 reversed-phase HPLC column (22×250 mm, 5μ m) over 20 min using a linear gradient of 10 - 90% acetonitrile with 0.1% trifluoroacetic acid at a flow rate of 10 mL/min with optical density monitoring at 220 nm. The collected fractions were lyophilised and the identity and purity of the peptides assessed by analytical HPLC and MALDI-TOF mass spectrometry. Peptides were obtained in good yields and with purity greater than 90%.

Escherichia coli K12 MG1655 and Staphylococcus aureus 68 (HER1049) were obtained from the Félix d'Hérelle Reference Center for Bacterial Viruses of Université Laval (http://www.phage.ulaval.ca). Both strains were grown in Trypticase soy broth with agitation at $37^{\circ}C$. The minimal inhibitory concentration assay was performed as described in [2] and broth microdilution protocol performed in 96-well plates. The bacterial strains were grown overnight at $37^{\circ}C$ with aeration and diluted to a final concentration of 5×10^5 cfu/ml in the assay. The peptides were diluted in sterile water and were tested at the following concentrations: 0, 1, 2, 4, 8, 16 and $32 \mu g/ml$. The optical density (600nm) was followed every 30 minutes for 24 hours with a Synergy 2 plate reader (BioTek Instruments, Inc.).

References

- 1. Wellings DA, Atherton E (1997) [4] standard fmoc protocols. Methods in enzymology 289: 44-67.
- 2. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (mic) of antimicrobial substances. Nature protocols 3: 163–175.