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ABSTRACT The Prisoner's Dilemma (PD) is a widely
employed metaphor for problemsacted with the evolution
of cooperative behavior. We have recently proposed an alter-
native approach to the PD, by exploring "spatial games" in
which players-who are either pure cooperators, C, or pure
defectors, D-Interact with ne hbors in some spatial array; in
each generation, players add up the scores from all encounters,
and ln the next generation a given cell is retained by Its previous
owner or taken over by a neighbor, depending on who has the
largest score. Over a wide range ofthe relevant parameters, we
find that C and D persist together indefinitey (without any of
the complex strategies that remember past encounters, and
anticipate fuiture ones, which characterize esentially al pre-
vious work on the iterated PD). Our earlier work, however,
dealt with symmetric spatial lattices In two dimensions, deter-
ministic winning and discrete time. We show here that the
esential results remain valid in more realistic situations where
the spatial dIbuti of cells are random in two or three
dimensions, and where WIning is partly probabilistic (rather
than being deter by the largest local total). The esential
results also remain valid {pawe Huberman and Glance [Huber-
man, B. A. & Glance, N. S. (1993) Proc. Nati. Acad. Sci. USA
90, 7716-7718]} when interactions occur In continuous rather
than discrete time.

One of the enduring problems of evolutionary theory, from
Darwin's time to today, is the evolution of altruism: coop-
erative behavior may benefit the group, but it is inherently
unstable to exploitation by cheats, who achieve greater
reproductive success than other members of the group by
enjoying the benefits of cooperation without paying the
associated costs. The paradoxical Prisoner's Dilemma (PD) is
a frequently used metaphor for these problems (1, 2). In its
standard form, the PD is a game played by two players, each
of whom may choose (independently but simultaneously) to
cooperate, C, or defect, D, in any one encounter. If both
players choose C, both get a payoff of magnitude R; if one
defects while the other cooperates, D gets the games' biggest
payoff, T, while C gets the smallest, S; ifboth defect, both get
P. With T > R > P > S, the paradox is evident. In any one
round, the strategy D is unbeatable (being better than C
whether the opponent chooses C or D). But by playing D,
both players end up scoring less than they would by coop-
erating (because R > P).
There is by now a large literature-several thousand pa-

pers-seeking to elucidate the relative merits of different
strategies (such as tit-for-tat) when the game is played many
times between players who remember past encounters.
These theoretical analyses, computer tournaments, and (to a
small extent) laboratory experiments continue, with the
answers depending on the extent to which future payoffs are
discounted, on the ensemble ofstrategies present in the group
ofplayers, on the degree to which strategies are deterministic
or partly stochastic (either by design or by accident), and so

on (3-11). Fascinating though this work is, it is clear that
simpler biological entities (self-replicating molecules, bacte-
ria, and arguably most non-human animals) that exhibit
cooperative interactions cannot obey the restrictions-
recognizing past players, remembering their past actions, and
anticipating future encounters whose payoffs are not signif-
icantly discounted-which necessarily underpin such strate-
gic analyses.
We have recently proposed an alternative approach, which

considers only two kinds of players: those who always coop-
erate, C, and those who always defect, D (12, 13). No explicit
account is taken of past or likely future encounters, so no
memory is required and no strategic considerations arise. Our
compensating new complication is to place the players-
individuals or organized groups-in a two-dimensional spatial
array or lattice ofpatches, with each lattice-site thus occupied
either by a C or a D. In each round, every individual "plays
the game" with a defined set of immediate neighbors. After
this, each site is occupied either by its original owner orby one
of the neighbors, depending on who scores the highest total in
that round. And so on, round by round. We have shown that
this simple and purely deterministic, spatial version of the PD
can generate self-organized spatial patterns (some ofwhich are
relatively static, and others ofwhich are chaotically changing)
in which C and D both persist indefinitely-that is, these
spatial PDs show that polymorphisms ofC and D persist, over
a wide range ofvalues for the parameters that characterize the
immediate advantage of cheating, without any reference to
memories, anticipated future encounters, or strategic niceties.
Our initial work on spatial versions of the PD and other

evolutionary games is, however, based on several simplifying
assumptions. In this paper, we show how the results can be
generalized in several ways, using more realistic assumptions
(with the original work representing a limiting case). First, we
generalize the deterministic assumption that a given site is
"won" by the neighboring player with the largest total score,
to allow for "probabilistic winning": the current site-holder
or any relevant neighbor may win the site, with probabilities
that depend to a specified extent on the relative score.
Second, we go beyond the earlier analyses based on sites
arranged as regular lattices, to spatially random distributions
of sites (the game now being played with neighbors within
some specified distance). We think these two generalizations
are important, because real situations are likely to involve
probabilistic winning (rather than the largest score always
triumphing) and irregular arrays (rather than strictly sym-
metric lattices). A third extension is to continuous time (with
individual sites "playing the game" with neighbors and being
updated one by one) in contrast to discrete time (with the
entire array simultaneously being updated each round). Hu-
berman and Glance (14) have already analyzed this contrast
between continuous and discrete time, but only for a single
value of the "cheating-advantage" parameter; as spelled out
below, we think the conclusion they draw from this restricted
analysis is misleading.

Abbreviation: PD, Prisoner's Dilemma.
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We now outline the results of each of these three gener-
alizations of our earlier work and also sketch some other
extensions. As summarized by Figs. 1 and 2, the essentials of
our original conclusion-that spatial considerations can be
enough to enable C andD to persist polymorphically-remain
intact. A more detailed account is given elsewhere (15).

Probabilistic Winning

very large values (essentially deterministic winning), D fares
somewhat better in that b values that for larger m gave
polymorphisms now give all D (see, e.g., the columns toward
the right in Fig. 1). But as m decreases below unity, moving
toward random drift, the band of b values producing poly-
morphisms again widens.

Spatial Ireularities

As before, we begin by resealing the PD payoffs to have the
canonical values R = 1, T = b (b > 1), P = e (1 > E 20 ), S
= 0. For a one-parameter exploration of the dynamics of our
spatial game, we further simplify by putting E = 0; this
preserves the essentials of the PD, and numerical studies
show that none of our findings is qualitatively altered if
instead E is finite (although significantly smaller than unity).
The character of the systems' behavior then depends on the
magnitude of the cheating-advantage parameter, b. For the
illustrations in Figs. 1 and 2, the PD is played with the eight
nearest neighbors and with one's own site (which is reason-
able if the players are thought of as organized groups occu-
pying territory). The arena consists of an n x n cartesian
array, and the boundaries are fixed, so the players at the
boundaries have fewer neighbors; the essential results are
unchanged if instead we use periodic boundary conditions.
We now introduce a degree of stochasticity into the contest

for ownership of sites or cells (15). At any given time, define
si = 0 if site i is occupied by D, and si = 1 if C. Let Ai denote
the payoff to the occupier of site i, from playing the PD game
with itself and with the vi - 1 neighbors with which it is
defined to interact. Then we define Pj, the probability that site
j is occupied by a C in the next round, to be

pi i=1 ~I v=Pj= Ajmj SAi. [11

The parameter m then characterizes the degree of stochas-
ticity in the contest for sites. In the limit m -a oo, we recover

the deterministic limit studied earlier: site j will be C in the
next round if the largest score among the sites {vj} is from a
C-owned site, and D otherwise. In the opposite limit ofm --

0, we have random drift: the probability that site j will be C
or D in the next round depends on the proportions of C and
D in the current set of neighbors {vj}. For m = 1, the
probability for site j to be C or D is linearly weighted
according to the scores of the relevant contestants ("propor-
tional winning").

Fig. 1 summarizes our results. The horizontal axis repre-
sents the cheating-advantage parameter, b, which increases
from left to right. The vertical axis represents the "degree-
of-stochasticity" parameter, m, decreasing from top to bot-
tom; the top line is for m -X oo and so corresponds to our

previous deterministic analysis. The color coding is as fol-
lows: blue represents a C site that was C in the preceding
generation; red, aD following a D; green, C following D; and
yellow, D following C (so that a primarily red and blue pattern
is static-note that the polymorphic patterns are indeed
mainly static). These results speak for themselves. For all m,
from deterministic winning to random drift, we see a clear
qualitative pattern: for values of b close to unity, the system
becomes all C (all blue); for relatively large b (approaching 2),

the system becomes all D (all red); but for a wide range of
intermediate b values, there are persisting polymorphisms of
C and D. In these polymorphic cases, the proportions of C
versus D tend to depend on the starting proportions for
relatively small b, but for larger b the proportions are
essentially independent of the initial configuration. Of
course, the details do depend on the degree to which winning
is probabilistic (as measured by m). As m decreases from

We showed earlier that the basic results were independent of
whether players interact with eight neighbors or with the four
orthogonal neighbors in square lattices, or with six neighbors
in hexagonal lattices. But spatial arrays in nature will rarely,
if ever, have strict symmetry. We have therefore made
extensive computer simulations of our spatial PD when the
individual sites or players are distributed randomly on a plane
(15). Players interact with those neighbors who lie within
some defined radius of interaction, r; this means, inter alia,
that different sites can interact with different numbers of
neighbors. Specifically, we generated the random array by
starting with a 200 x 200 square lattice and then letting some
proportion (say, 5%) of the cells, chosen at random, be
occupied by players; these "active" cells thenceforth defined
the random array. The "interaction radius," r, varied from 2
to 11 (measured in units of the original lattice) in different
simulations.
We explored our spatial PD for these irregular arrays, for

various values of r and b, in the limit ofdeterministic winning
(m -* oo). As for the symmetric lattices-the top row of Fig.
1-we found persistent polymorphisms ofC andD for a range
of intermediate b values, provided r was not too big (con-
versely, if players interact with too many neighbors, the
system became all D). The specific limit to r consistent with
maintaining polymorphism, rc, depends on b (e.g., for b =
1.6, rc - 9), with rc decreasing as b increases. In all cases, the
patterns settled to become relatively static (mainly red and
blue), and the proportion ofC and D tended to depend on the
initial configurations, especially for relatively small b.

Continuous Versus Discrete Time

Our original studies of spatial PDs were for discrete time, in
the sense that the total payoffs to each site were evaluated,
and then all sites were updated simultaneously (12, 13). This
corresponds to the common biological situation where an
interaction phase is followed by a reproductive phase; al-
though the game is usually played with individual neighbors
in continuous time, at the end of each round ofgame playing
the chips are cashed in, and the cashier pays in fitness
coinage. Similar things happen in many other contexts (host
parasitoid interactions, or prey-predator models where dis-
persal and territory acquisition is followed by raising the
young), resulting in biological situations in which individual
events-like challenges for territories, eating and being
eaten, and so on-occur in continuous time, yet the appro-
priate simple model is one with discrete time (16, 17). There
are, however, some situations where it may be more appro-
priate to work in continuous time, choosing individual sites
at random, evaluating all the relevant scores, and updating
immediately. Huberman and Glance (14), indeed, suggest
that "ifa computer simulation is to mimic a real world system
. . . it should contain procedures that ensure that the updat-
ing of the interacting entities is continuous and asynchro-
nous." We strongly disagree with this extreme view, believ-
ing that discrete time is appropriate for many biological
situations, and continuous time for others.
Be this as it may, Fig. 2 represents the simulations sum-

marized by Fig. 1, but now using continuous time (sequential
updating of individual sites) rather than the discrete time
(synchronous updating) of Fig. 1 (15). The broad features of
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FIG. 1. Spatial dynamics of cooperators, C, and defectors, D, in discrete time simulations. The simulations were performed on an 80 x 80
square lattice with periodic boundaries. Interaction occurs with the eight nearest neighbors and also includes self-interaction. Each picture shows
the spatial distribution after 200 generations. The parameter b denotes the payoff that D obtain by interaction with C (C obtain payoff 1 from
interactions with other C). The columns show the outcome for different values of b. From the left we have b = 1.05, 1.13, 1.16, 1.35, 1.42, 1.55,
1.71, 1.9, 2.01. The rows show different values of m, the parameter that describes the degree of stochasticity in the contest for sites, Eq. 1. For
m -Xoo a cell is always given to the most successful neighbor; m = 1 denotes an intermediate case, where cells are given to neighbors with
probabilities being proportional to the payoffs of individual neighbors; m = 0 denotes spatial drift irrespective of achieved payoffs. From the
top we have m = 00, 100, 20, 10, 1, 0.5, 0. The color code is as follows: blue, a C that was a C in the previous generation; red, a D that was
a D in the previous generation; green, a C that was a D in the previous generation; yellow, a D that was a C in the previous generation. The
amount of green and yellow shows how many cells change from one generation to the next. A picture that is only red and blue is completely
static.

Fig. 2, showing the proportions of C and D found for various
values of b and m, are qualitatively similar to those of Fig. 1.
There are some differences of detail. For a small range of

relatively large b values, continuous time leads to all D,
whereas discrete time gave polymorphisms of C and D (com-
pare some of the boxes in the columns to the right in Figs. 1
and 2). In particular, for deterministic winning and b between
1.8 and 2 (the box second from the right in the top row in Figs.
1 and 2), we find polymorphism for discrete time and all D for
continuous time. Huberman and Glance (14) consider only this
single case, and from it they draw sweeping conclusions about
the differences between continuous versus discrete time mod-
els. The broad similarities between Figs. 1 and 2, however,
show plainly that these conclusions are mistaken.

Other Extensions

Elsewhere, we have considered several other extensions (15).
One is to three-dimensional arrays, either symmetric or irreg-
ular and with deterministic or probabilistic winning; the results
are similar to the two-dimensional ones. If some sites may
become unoccupied ("death"), and remain so if surrounded
by sites with low payoffs, then C is easierto maintain. Suppose

payoffs to self-interactions are weighted by a parameter a,
relative to payoffs from interactions with neighbors (we have
been considering a = 1, but we could have a > 1 or a < 1):
polymorphisms can be maintained in the absence of self-
interaction (a = 0), but only for relatively large values ofm and
for smaller values of b; for m = 1 (proportional winning), C
cannot persist in the absence of self-interaction. A simpler
"mean field" analysis is possible for models in which sites
disperse propagules globally, in proportion to their total pay-
off; polymorphisms of C and D can now be maintained for all
b > 1, with the fraction ofC being linearly proportional to the
self-interaction parameter a.

Conclusions

In our earlier papers (12, 13), we could not resist extended
discussion of the beautiful patterns that unfolded if the
starting configuration was symmetrical. As we emphasized at
the time, however, these "Persian Carpets" are of aesthetic
and mathematical interest but have no direct biological
significance (although mathematical understanding of such
special cases helps illuminate the dynamics ofthe game more
generally). They obviously cannot arise if there is any asym-
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FIG. 2. As Fig. 1, but for continuous time. In each elementary time step a cell is chosen at random, its payoff is compared to the neighbors'
payoffs, and the cell is updated immediately. Exactly the same parameter regions as in Fig. 1 are shown. Note that the interesting behavior for
1.8 < b < 2 in the deterministic game has disappeared, but the general phenomenon of coexistence between C and D for a range of different
b values remains completely unchanged. In the stochastic game (m = 1) C seem to do better in the continuous time simulations than in the discrete
time simulations.

metry or departure from determinism, as there will be if we
have probabilistic winning, or spatial irregularity, or contin-
uous updating (much less, of course, an asymmetric initial
configuration). Less trivially, in our original study with
deterministic winning in symmetrical lattices, we identified a
particularly interesting domain of dynamical behavior within
the larger polymorphic domain, in which the C-D polymor-
phism showed chaotic variation in space and time (lots of
green and yellow along with the red and blue; see, e.g., the
"dynamic fractals" in the box second from the right in the top
row of Fig. 1, corresponding to 2 > b > 1.8). This particular
regime of dynamical behavior involves C winning along
straight-line boundaries between local clusters of C and D,
while D gains along irregular boundaries. As a more local
version of the global considerations just noted, any kind of
randomness that disturbs the straight lines will destroy this
particular dynamical regime. Thus the small regime of dy-
namic fractals behavior, which we emphasized earlier, will
not arise once we have probabilistic winning, or spatial
irregularities, or continuous time.
The main conclusion of our earlier, and much more re-

stricted, analysis remains intact. As Figs. 1 and 2 show, C and
D can persist together for a broad band of values of the
cheating-advantage parameter b. This is broadly true for
deterministic or various degrees of probabilistic winning, for
symmetric or irregular arrays in two or three dimensions, and
for discrete and continuous time. Cooperators can persist in
the spatial PD, without any need to invoke memory of
previous encounters, anticipation of future ones, or strategic
complexities.

More generally, spatial effects can confound intuition
about evolutionary games. Thus, for example, it can be seen
that equilibria among strategies are no longer necessarily
characterized by their having equal average payoffs; a strat-
egy with a higher average payoff can converge toward
extinction; and strategies can become extinct even though
their basic reproductive rate (at very low frequency) is larger
than unity. This is because the asymptotic equilibrium prop-
erties of spatial games are determined by "local relative
payoffs" in self-organized spatial structures, and not by
global averages. Although we have focused here on the PD,
our overall conclusion is that interactions with local neigh-
bors in two- or three-dimensional spatial arrays can promote
the coexistence of strategies, in situations where one strategy
would exclude all others if the interactions occurred ran-
domly and homogeneously.
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