Supplementary Information

Small Molecule Ice Recrystallization Inhibitors Enable Freezing of Human Red Blood Cells with Reduced Glycerol Concentrations

Chantelle J. Capicciotti¹, Jayme D. R. Kurach², Tracey R. Turner², Ross S. Mancini¹, Jason P. Acker² and Robert N. Ben^{1,*}

¹Department of Chemistry, D'Iorio Hall, 10 Marie Curie, University of Ottawa, Ottawa, ON, Canada, K1N 6N5 Fax: 1-613-562-5170 Tel:1-613-562-5800; E-mail: rben@uottawa.ca. ²Canadian Blood Services, Centre for Innovation, 8249 – 114 Street NW, Edmonton, AB, Canada, T6G 2R8 Tel: 1-780-702-8269; E-mail: jason.acker@blood.ca.

Table of Contents

Supplemental RBC Freezing Data	2
Supplementary Methods	3
General Experimental:	3
Synthesis of p-methoxyphenyl-β-D-galactopyranoside (5) and p-methoxyphenyl-β-D-glucopyra	noside (6): 4
Synthesis of p-methoxyphenyl-β-D-mannopyranoside (7):	5
Synthesis of phenolic-glucopyranosides 8-13:	8
Synthesis of p-methoxybenzyl-glucopyranoside 15:	13
Synthesis of α -linked p-methoxyphenyl-glucopyranoside 16:	14
References	15
Spectra	16

Supplemental RBC Freezing Data

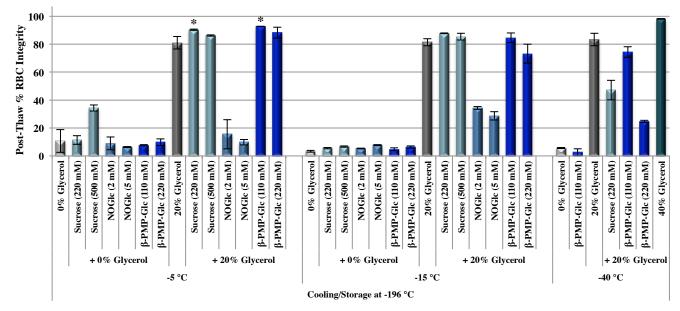
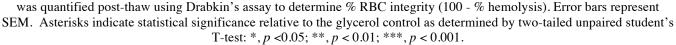
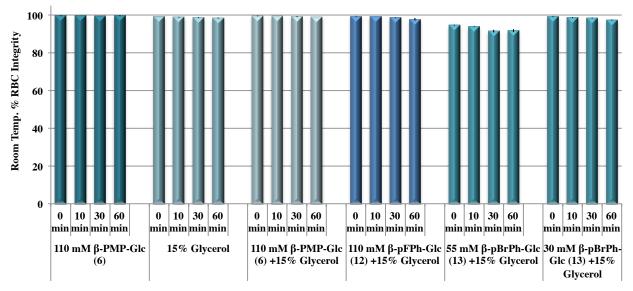
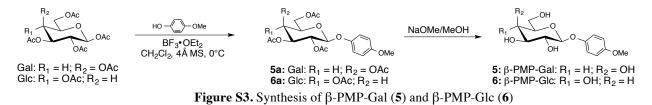




Figure S1 I RBC freezing with novel small molecule IRIs. The effect of NOGlc (4), β -PMP-Glc (6) and sucrose on postthaw RBC integrities. RBC samples in indicated cryo-solutions containing no (0%) or 20% glycerol in a dextrose/saline buffer were slow-cooled 1 °C/min to defined sub-zero temperatures and then rapidly cooled (cooling rate approximately 115 °C/min) by immersion into liquid nitrogen and stored at -196 °C. All samples were quickly thawed at 37 °C and post-thaw hemolysis

Figure S2 | **Toxicity of β-PMP-Glc (6), β-pFPh-Glc (12) and β-pBrPh-Glc (13) cryo-solutions on RBCs.** RBC integrities after room temperature incubation for indicated time period with cryo-solutions without freezing. Hemolysis was quantified post-thaw using Drabkin's assay to determine % RBC integrity (100 - % hemolysis). Error bars represent SEM.


Supplementary Methods

General Experimental:

All anhydrous reactions were performed in flame-dried glassware under a positive pressure of dry argon. Air or moisture-sensitive reagents and anhydrous solvents were transferred with oven-dried syringes or cannulae. All flash chromatography was performed with E. Merck silica gel 60 (230-400 mesh). All solution phase reactions were monitored using analytical thin layer chromatography (TLC) with 0.2 mm pre-coated silica gel aluminum plates 60 F254 (E. Merck). Components were visualized by illumination with a short-wavelength (254 nm) ultraviolet light and/or staining (ceric ammonium molybdate, potassium permanganate, or phosphomolybdate stain solution). All solvents used for anhydrous reactions were distilled. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from sodium/benzophenone under nitrogen. Dichloromethane (DCM) was distilled from calcium hydride. N,N-dimethylformamide (DMF) was stored over activated 4Å molecular sieves under argon. ¹H (400 or 500 MHz) and ¹³C NMR (100 or 125 MHz) spectra were recorded at ambient temperature on a Bruker Avance 400, Bruker Avance 500, or Varian Inova 500 spectrometer. Deuterated chloroform (CDCl₃) or water (D_2O) were used as NMR solvents, unless otherwise stated. Chemical shifts are reported in ppm using the solvent residual peak as an internal standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet and br, broad. Low resolution mass spectrometry (LRMS) was performed on a Micromass Quatro-LC Electrospray spectrometer with a pump rate of 20 µL/min using electrospray ionization (ESI).

Compounds below are in order of appearance in the manuscript. Intermediates that were not numbered in the manuscript received numbers beginning with **12**. NMR spectra for novel compounds and final compounds assessed for IRI activity are provided.

Synthesis of p-methoxyphenyl- β -D-galactopyranoside (5) and p-methoxyphenyl- β -D-glucopyranoside (6):

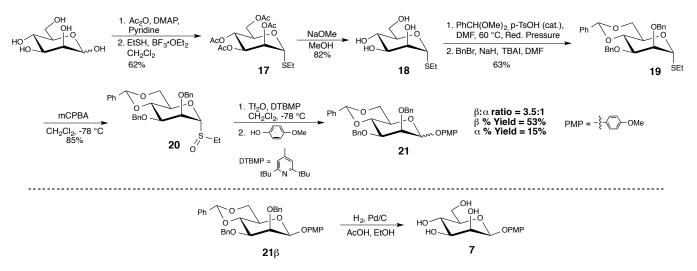
p-Methoxyphenyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (5a)

To a mixture of 1,2,3,4,6-penta-*O*-acetyl- β -D-galactopyranose (5.0 g, 12.8 mmol), 4-methoxyphenol (2.22 g, 17.9 mmol) and 4 Å MS in anhydrous CH₂Cl₂ (50 mL) stirring at 0 °C under Ar, was slowly added boron trifluoride diethyl etherate (2.09 mL, 16.6 mmol). The reaction mixture was stirred overnight, then diluted with CH₂Cl₂ and quenched with sodium bicarbonate. The solution was filtered through Celite®, then extracted with CH₂Cl₂. The organic layer was washed with sodium bicarbonate, water, saturated brine, then dried over MgSO₄ and concentrated. Column chromatography (3:1 hexanes/ethyl acetate) afforded **5a** as a white powder (5.3 g, 91%). Characterization data is consistent with that previously reported¹. ¹H NMR (500 MHz, CDCl₃): δ 6.97-6.94 (m, 2H), 6.84-6.80 (m, 2H), 5.47-5.44 (m, 2H), 5.09 (dd, *J* = 10.4, 3.4 Hz, 1H), 4.92 (d, *J* = 8.0 Hz, 1H), 4.23 (dd, *J* = 11.3, 6.8 Hz, 1H), 4.16 (dd, *J* = 11.3, 6.5 Hz, 1H), 4.02-3.99 (m, 1H), 3.78 (s, 3H), 2.18 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 170.0, 169.4, 169.3, 155.8, 150.9, 118.7, 114.5, 100.7, 72.4, 71.3, 70.2, 66.3, 61.4, 55.5, 20.7, 20.6, 20.6, 20.5. LRMS (ESI): *m/z* calcd. for C₂₁H₃₀NO₁₁ [M+NH₄]⁺ 472.5; found, 472.3.

p-Methoxyphenyl-β-D-galactopyranoside (5)

Compound **5a** (5.3 g, 11.6 mmol) was dissolved in a solution of sodium methoxide in methanol (25 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin and filtered. The filtrate was concentrated and the product was lyophilized to yield **5** as a white powder (3.3 g, 98%). Characterization data is consistent with that previously reported¹. ¹H NMR (400 MHz, CD₃OD): δ 7.08-7.04 (m, 2H), 6.85-6.81 (m, 2H), 4.72 (d, *J* = 7.7 Hz, 1H), 3.89 (dd, *J* = 3.4, 0.8 Hz, 1H), 3.78-3.74 (m, 3H), 3.74 (s, 3H), 3.63 (ddd, *J* = 6.7, 5.5, 1.1 Hz, 1H), 3.55 (dd, *J* = 9.7, 3.4 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 154.6, 151.0, 118.1, 115.0, 101.7, 75.4, 72.6, 70.6, 68.5, 60.7, 55.8. LRMS (ESI): *m/z* calcd. for C₁₃H₁₈NaO₇ [M+Na]⁺ 309.3; found, 309.3.

p-Methoxyphenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (6a)


To a mixture of 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (15 g, 38.4 mmol), 4-methoxyphenol (6.7 g, 53.8 mmol) and 4 Å MS in anhydrous CH₂Cl₂ (100 mL) stirring at 0 °C under Ar, was slowly added boron trifluoride diethyl etherate (9.64 mL, 76.8 mmol). The reaction mixture was stirred overnight, then diluted with CH₂Cl₂ and

quenched with sodium bicarbonate. The solution was filtered through Celite®, then extracted with CH₂Cl₂. The organic layer was washed with sodium bicarbonate, water, saturated brine, then dried over MgSO₄ and concentrated. Column chromatography (6:4 hexanes/ethyl acetate) afforded **6a** as a white powder (13.6 g, 78%). Characterization data is consistent with that previously reported². ¹H NMR (300 MHz, CDCl₃): δ 6.97-6.92 (m, 2H), 6.84-6.78 (m, 2H), 5.31-5.20 (m, 2H), 5.16 (t, *J* = 9.6 Hz, 1H), 4.95 (d, *J* = 7.6 Hz, 1H), 4.29 (dd, *J* = 12.3, 5.2 Hz, 1H), 4.18 (dd, *J* = 12.3, 2.5 Hz, 1H), 3.83-3.79 (m, 1H), 3.77 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H) 2.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 170.3, 169.4, 169.3, 155.8, 150.9, 118.7, 114.5, 100.3, 72.7, 71.9, 71.2, 68.3, 61.9, 55.6, 20.7, 20.7, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₁H₃₀NO₁₁ [M+NH₄]⁺ 472.5; found, 472.2; *m/z* calcd. for C₂₁H₂₆NaO₁₁ [M+Na]⁺ 477.4; found, 477.1.

p-Methoxyphenyl-β-D-glucopyranoside (6)

Compound **6a** (6.75 g, 14.9 mmol) was dissolved in a solution of sodium methoxide in methanol (25 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **6** as a white powder (4.1 g, 95%). ¹H NMR (400 MHz, D₂O): δ 7.14-7.10 (m, 2H), 7.01-6.96 (m, 2H), 5.01 (d, *J* = 7.6 Hz, 1H), 3.92 (dd, *J* = 12.4, 2.2 Hz, 1H), 3.81 (s, 3H), 3.75 (dd, *J* = 12.4, 5.7 Hz, 1H), 3.62-3.54 (m, 3H), 3.48 (dd, *J* = 9.6, 9.2 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 154.7, 150.9, 118.2, 115.0, 101.2, 76.1, 75.5, 72.9, 69.4, 60.5, 55.8. LRMS (ESI): *m/z* calcd. for C₁₃H₁₈NaO₇ [M+Na]⁺ 309.3; found, 309.3.

Synthesis of p-methoxyphenyl- β -D-mannopyranoside (7):

Figure S4. Synthesis of β -PMP-Man (7).

Ethyl 2,3,4,6-Tetra-O-Acetyl-1-thio-α-D-Mannopyranoside (17)

To a solution of D-mannose (2.0 g, 11.1 mmol) in dry pyridine (45 mL) was added acetic anhydride (26 mL) and the reaction mixture was stirred at 0 °C for 1 hour. A catalytic amount of 4-dimethylaminopyridine was added and the mixture was stirred at room temperature overnight. Ethanol was added and the solvent was evaporated under *in vacuo* and the residue was diluted in ethyl acetate, washed with sodium bicarbonate, water and brine. The mixture was dried with MgSO₄, filtered and concentrated. The crude product was then added to a solution of ethanethiol (1.23 mL, 16. 6 mmol) and 4 Å MS in anhydrous CH₂Cl₂ (30 mL) stirring at 0 °C under Ar and boron trifluoride diethyl etherate (4.2 mL, 33.3 mmol) was added dropwise. The reaction mixture was stirred overnight, then diluted with CH₂Cl₂ and quenched with sodium bicarbonate. The solution was filtered through Celite®, then extracted with CH₂Cl₂. The organic layer was washed with sodium bicarbonate, water, saturated brine, then dried over MgSO₄ and concentrated. Column chromatography (7:3 hexanes/ethyl acetate) afforded **17** as a syrup (2.7 g, 62%). Characterization data is consistent with that previously reported³. ¹H NMR (300 MHz, CDCl₃): δ 5.34 (dd, J = 3.2, 1.6 Hz, 1H), 5.31-5.27 (m, 3H), 4.40 (td, J = 7.1, 2.5 Hz, 1H), 4.32 (dd, J = 12.1, 5.3 Hz, 1H), 4.10 (dd, J = 12.1, 2.2 Hz, 1H), 2.71-2.57 (m, 2H), 2.17 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.31 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 170.0, 169.8, 169.7, 82.2, 71.1, 69.5, 68.9, 66.3, 62.4, 25.4, 20.9, 20.7, 20.7, 20.60, 14.7. LRMS (ESI): *m/z* calcd. for C₁₆H₂₄NaO₉S [M+Na]⁺ 415.4; found, 415.2.

Ethyl 1-thio-α-D-Mannopyranoside (18)

Compound **17** (2.7 g, 6.9 mmol) was dissolved in a solution of sodium methoxide in methanol (10 mL) and stirred for one hour at room temperature. The solution was neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated to yield **18** as a solid (1.5 g, 95%). Characterization data is consistent with that previously reported⁴. ¹H NMR (300 MHz, CDCl₃): δ 5.31 (d, *J* = 1.5 Hz, 1H), 4.03 (dd, *J* = 3.3, 1.6 Hz, 1H), 4.01-3.96 (m, 1H), 3.87 (dd, *J* = 12.3, 2.3 Hz, 1H), 3.79-3.72 (m, 2H), 3.65 (t, *J* = 9.7 Hz, 1H), 2.75-2.57 (m, 2H), 1.26 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 84.2, 73.0, 71.8, 71.0, 67.1, 60.8, 24.7, 14.0. LRMS (ESI): *m/z* calcd. for C₈H₁₅O₅S [M-H]⁻ 223.3; found, 223.0.

Ethyl 4,6-O-Benzylidene-2,3-O-Benzyl-1-thio-α-D-Mannopyranoside (19)

To a solution of **18** (375 mg, 1.67 mmol) in DMF (3 mL) was added benzaldehyde dimethyl acetal (251 μ L, 1.67 mmol) and catalytic *p*-toluenesulfonic acid. The solution was stirred under reduced pressure at 60 °C for 3 hours then cooled to room temperature and triethylamine (50 μ L) was added. The mixture was then evaporated and crystallized from CH₂Cl₂/pet. ether to afford 360 mg (69%) of the crude product that was used without further purification. The crude product (166 mg, 0.53 mmol) was dissolved in DMF (5 mL) and to this solution was added NaH (85 mg, 2.12 mmol) and the mixture was stirred for 10 min. Benzyl bromide (189 μ L, 1.59 mmol) was added, followed by a catalytic amount of tetrabutylammonium iodide and the reaction mixture was stirred

overnight. The mixture was quenched the following day with brine and diluted with ethyl acetate. The organic layer was extracted and washed with brine, then dried over MgSO₄ and concentrated. Purification by flash chromatography (19:1 hexanes/ethyl acetate) yielded **19** (221 mg, 91%, 63% overall) as a syrup. Characterization data is consistent with that previously reported in the literature⁵. ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.50 (m, 2H), 7.39-7.28 (m, 13H), 5.65 (s, 1H), 5.31 (d, *J* = 0.8 Hz, 1H), 4.82-4.71 (m, 3H), 4.63 (d, *J* = 12.2 Hz, 1H), 4.32-4.16 (m, 3H), 3.94-3.87 (m, 3H), 2.68-2.48 (m, 2H), 1.24 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (76 MHz, CDCl₃): δ 138.4, 137.9, 137.6, 128.8, 128.4, 128.3, 128.2, 128.1, 127.8, 127.6, 127.5, 126.1, 101.4, 83.5, 79.2, 78.1, 76.4, 73.1, 73.0, 68.6, 64.6, 25.3, 14.9. LRMS (ESI): *m/z* calcd. for C₂₉H₃₃O₅S [M+H]⁺ 493.6; found, 493.2.

Ethyl 4,6-O-Benzylidene-2,3-O-Benzyl-1-thio-α-D-Mannopyranoside S-Oxide (20)

To a stirred solution of **19** (89 mg, 0.181 mmol) in dry dichloromethane (3 mL) at-78 °C was added 70% *meta*chloroperbenzoic acid (41 mg, 0.181 mmol). The reaction mixture was stirred at -78 °C for 4 hours then warmed to -20 °C and quenched with sodium carbonate. The organic layer was extracted and washed with Na₂CO₃, water and brine, then dried over MgSO₄ and concentrated. Purification by column chromatography (2:1 Hex/EtOAc) yielded **20** (78 mg, 85%). Characterization data is consistent with that previously reported in the literature⁶. ⁻¹H NMR (300 MHz, CDCl₃): δ 7.47-7.25 (m, 15H), 5.61 (s, 1H), 4.85-4.77 (m, 2H), 4.71-4.64 (m, 2H), 4.59 (d, *J* = 1.4 Hz, 1H), 4.49 (dd, *J* = 3.4, 1.4 Hz, 1H), 4.32 (dd, *J* = 10.0, 9.0 Hz, 1H), 4.18 (dd, *J* = 9.8, 4.2 Hz, 1H), 4.10 (dd, *J* = 10.1, 3.4 Hz, 1H), 3.81-3.67 (m, 2H), 2.93-2.83 (m, 1H), 2.68-2.56 (m, 1H), 1.33 (t, *J* = 7.5 Hz, 3H). ⁻¹³C NMR (76 MHz, CDCl₃): δ 138.7, 137.4, 137.2, 128.6, 128.3, 128.3, 128.0, 127.9, 127.8, 127.6, 127.5, 125.6, 101.9, 92.2, 78.2, 77.1, 76.4, 73.1, 73.0, 68.3, 64.6, 45.4, 6.9. LRMS (ESI): *m/z* calcd. for C₂₉H₃₂KO₆S [M+K]⁺ 547.7; found, 547.1.

p-Methoxyphenyl-4,6-*O*-Benzylidene-2,3-*O*-Benzyl-β-D-Mannopyranoside (21)

Glycosidation conditions to form the β-linked mannopyranoside were as described by Crich et al^{7,8}. To a stirred solution of sulfoxide **20** (17.6 mg, 0.035 mmol) and 2,6-di-*tert*-butyl-4-methylpyridine (14.2 mg, 0.069 mmol) in dry dichloromethane (1 mL) cooled to -78 °C under argon was added trifluoromethanesulfonic anhydride (6.4 μ L, 0.038 mmol). After stirring for 2-5 minutes a solution of 4-methoxyphenol (4.7 mg, 0.038 mmol) in dry dichloromethane (1 mL) was added dropwise. The reaction mixture was stirred at -78 °C for 2 hours then warmed to 0 °C over 2 hours and maintained at 0 °C for 30 minutes before quenching with sodium bicarbonate, washing with brine, drying over MgSO₄ and concentrating. Purification by column chromatography over a gradient (19:1 hexanes/ethyl acetate to 8:2 hexanes/ethyl acetate) gave a 3.5:1 β:α mixture and yielded pure β-anomer (as determined by ¹H NMR analysis and $J_{1,2}$ values⁹) (10.1 mg, 53%) and pure α-anomer (2.9 mg, 15%). Characterization data for **21 β-anomer**: ¹H-NMR (500 MHz; CDCl₃): δ 7.55-7.50 (m, 4H), 7.40-7.28 (m, 11H),

6.95-6.93 (m, 2H), 6.83-6.81 (m, 2H), 5.65 (s, 1H), 5.08 (d, J = 12.3 Hz, 1H), 5.01 (d, J = 12.2 Hz, 1H), 4.96 (d, J = 0.6 Hz, 1H), 4.75 (d, J = 12.5 Hz, 1H), 4.65 (d, J = 12.4 Hz, 1H), 4.34 (dt, J = 10.4, 5.2 Hz, 1H), 4.29 (d, J = 9.7 Hz, 1H), 4.11 (d, J = 3.0 Hz, 1H), 3.98 (t, J = 10.3 Hz, 1H), 3.77 (s, 3H), 3.68 (dd, J = 9.9, 3.1 Hz, 1H), 3.46-3.41 (m, 1H). ¹³C NMR (126 MHz; CDCl₃): δ 155.3, 151.0, 138.2, 138.2, 137.5, 128.9, 128.7, 128.3, 128.2, 128.2, 127.7, 127.6, 127.6, 126.0, 117.9, 114.5, 101.5, 100.8, 78.5, 77.8, 76.0, 75.0, 72.6, 68.6, 67.6, 55.6. LRMS (ESI): *m/z* calcd. for C₃₄H₃₄KO₇ [M+K]⁺ 593.7; found, 593.3.

p-Methoxyphenyl-β-D-Mannopyranoside (7)

A solution of **21** β (8.6 mg, 0.016 mmol) in 4 mL of EtOH/AcOH (3:1) and 5% Pd/C was stirred for 16 hours under an atmosphere of H₂. The flask was purged with air, the catalyst was removed by filtration through Celite® and the solvents were removed *in vacuo*. Purification by C-18 solid-phase extraction cartridge over a gradient (water to 9:1 water/ACN to 8:2 water/ACN to 1:1 water/ACN) afforded 7 (3.3 mg, 74%) as a white solid. ¹H NMR (500 MHz, D₂O): δ 7.11 (d, *J* = 9.1 Hz, 2H), 7.00 (d, *J* = 9.1 Hz, 2H), 5.28 (s, 1H), 4.20 (d, *J* = 2.9 Hz, 1H), 3.94 (dd, *J* = 12.3, 2.2 Hz, 1H), 3.82 (s, 3H), 3.79-3.74 (m, 2H), 3.68 (t, *J* = 9.7 Hz, 1H), 3.51 (ddd, *J* = 9.3, 6.5, 2.5 Hz, 1H). ¹³C NMR (126 MHz, D₂O): δ 154.4, 150.5, 117.7, 114.9, 98.3, 76.2, 72.7, 70.5, 66.5, 60.8, 55.7. LRMS (ESI): *m/z* calcd. for C₁₃H₁₇O₇ [M-H]⁻ 285.3; found, 285.1.

Synthesis of phenolic-glucopyranosides 8-13:

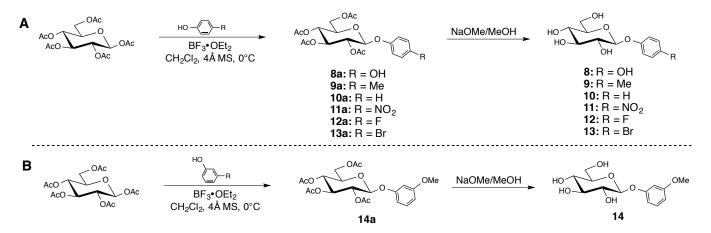


Figure S5. Synthesis of phenolic-glucopyranosides (A) 7-13 and (B) 14.

p-Hydroxyphenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (8a)

Compound **8a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (1 g, 2.56 mmol), hydroquinone (211 mg, 1.92 mmol) and boron trifluoride diethyl etherate (482 μ L, 3.84 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (15 mL) at 0 °C. Column chromatography (7:3 hexanes/ethyl acetate) afforded **8a** (339

mg, 40%) as a white solid. Characterization data is consistent with that previously reported in the literature¹⁰. ¹H NMR (400 MHz, CDCl₃): δ 6.90-6.86 (m, 2H), 6.77-6.72 (m, 2H), 5.30-5.20 (m, 2H), 5.16 (t, *J* = 9.5 Hz, 2H), 4.93 (d, *J* = 7.6 Hz, 1H), 4.28 (dd, *J* = 12.3, 5.1 Hz, 1H), 4.16 (dd, *J* = 12.3, 2.5 Hz, 1H), 3.79 (ddd, *J* = 9.9, 5.1, 2.5 Hz, 1H), 2.09 (d, *J* = 1.5 Hz, 3H), 2.07-2.05 (m, 5H), 2.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 170.3, 169.5, 169.4, 151.8, 150.8, 118.9, 116.0, 100.3, 72.7, 71.9, 71.2, 68.3, 61.9, 20.7, 20.7, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₀H₂₄NaO₁₁ [M+Na]⁺ 463.4; found, 463.2.

p-Hydroxyphenyl-β-D-glucopyranoside (8)

Compound **8a** (200 mg, 0.45 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **8** as a white powder (122 mg, 98%). ¹H NMR (400 MHz, D₂O): δ 7.07-7.03 (m, 2H), 6.89-6.85 (m, 2H), 4.99 (d, *J* = 7.6 Hz, 1H), 3.92 (dd, *J* = 12.4, 2.2 Hz, 1H), 3.75 (dd, *J* = 12.5, 5.6 Hz, 1H), 3.61-3.52 (m, 3H), 3.48 (dd, *J* = 9.7, 8.9 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 151.2, 150.4, 118.4, 116.2, 101.3, 76.0, 75.5, 73.0, 69.4, 60.5. LRMS (ESI): *m/z* calcd. for C₁₂H₁₆NaO₇ [M+Na]⁺ 295.3; found, 295.2.

p-Methylphenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (9a)

Compound **9a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl-β-D-glucopyranose (500 mg, 1.28 mmol), 4-methylphenol (190 mg, 1.79 mmol) and boron trifluoride diethyl etherate (800 μL, 6.40 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (6 mL) at 0 °C. Column chromatography (7:3 hexanes/EtOAc) afforded **9a** as a white powder (205 mg, 37%). Characterization data is consistent with that previously reported in the literature¹¹. ¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 5.31-5.23 (m, 2H), 5.16 (t, J = 9.6 Hz, 1H), 5.02 (d, J = 7.7 Hz, 1H), 4.29 (dd, J = 12.2, 5.3 Hz, 1H), 4.16 (dd, J = 12.3, 2.3 Hz, 1H), 3.85-3.81 (m, 1H), 2.30 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 170.3, 169.4, 169.3, 154.8, 132.9, 130.0, 117.0, 99.6, 72.8, 72.0, 71.2, 68.3, 62.0, 20.7, 20.7, 20.6, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₁H₃₀NO₁₀ [M+NH₄]⁺ 456.4; found, 456.1.

p-Methylphenyl-β-D-glucopyranoside (9)

Compound **9a** (124 mg, 0.28 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The product was purified by recrystallization in hot ethyl acetate to afford **9** as a white powder (68 mg, 89%). Characterization data is consistent with that previously reported in the literature¹¹. ¹H NMR (400 MHz, D₂O): δ 7.24-7.22 (m, 2H), 7.06-7.04 (m, 2H), 5.08 (d, *J* = 7.6 Hz, 1H), 3.92 (dd,

J = 12.4, 2.3 Hz, 1H, 3.75 (dd, J = 12.4, 5.7 Hz, 1H), 3.63-3.53 (m, 3H), 3.49 (dd, J = 10.0, 8.6 Hz, 1H), 2.30 (s, 3H).¹³C NMR (101 MHz, D₂O): δ 154.4, 133.3, 130.2, 116.6, 100.5, 76.1, 75.6, 73.0, 69.5, 60.6, 19.6. LRMS (ESI): *m/z* calcd. for C₁₃H₁₈NaO₆ [M+Na]⁺ 293.2; found, 293.1.

Phenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (10a)

Compound **10a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (500 mg, 1.28 mmol), phenol (169 mg, 1.79 mmol) and boron trifluoride diethyl etherate (209 μ L, 1.66 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (10 mL) at 0 °C. Column chromatography (7:3 hexanes/EtOAc) afforded **10a** as a white powder (420 mg, 77%). Characterization data is consistent with that previously reported in the literature². ¹H NMR (400 MHz, CDCl₃): δ 7.30 (dd, *J* = 8.7, 7.4 Hz, 2H), 7.08 (dd, *J* = 7.8, 7.0 Hz, 1H), 6.99 (dt, *J* = 7.8, 1.0 Hz, 2H), 5.33-5.25 (m, 2H), 5.17 (t, *J* = 9.7 Hz, 1H), 5.09 (d, *J* = 7.8 Hz, 1H), 4.29 (dd, *J* = 12.3, 5.4 Hz, 1H), 4.17 (dd, *J* = 12.3, 2.5 Hz, 1H), 3.86 (ddd, *J* = 10.0, 5.3, 2.5 Hz, 1H), 2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H).¹³C NMR (75 MHz, CDCl₃): δ 170.6, 170.2, 169.4, 169.3, 156.8, 129.6, 123.4, 117.0, 99.1, 72.7, 72.0, 71.2, 68.3, 61.9, 20.7, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₀H₂₃O₁₀ [M-H]⁻ 423.4; found, 423.3.

Phenyl-β-D-glucopyranoside (10)

Compound **10a** (400 mg, 0.94 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **10** as a white powder (229 mg, 95%). ¹H NMR (400 MHz, D₂O): δ 7.41-7.37 (m, 2H), 7.16-7.13 (m, 3H), 5.13 (d, *J* = 7.5 Hz, 1H), 3.94-3.90 (m, 1H), 3.74 (dd, *J* = 12.5, 5.7 Hz, 1H), 3.64-3.54 (m, 3H), 3.48 (dd, *J* = 9.8, 8.9 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 156.5, 129.9, 123.3, 116.5, 100.1, 76.1, 75.5, 72.9, 69.4, 60.5 LRMS (ESI): *m/z* calcd. for C₁₂H₁₅O₆ [M-H]⁻ 255.3; found, 255.1.

p-Nitrophenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (11a)

Compound **11a** was prepared in a similar manner as **6a** from 1,2,3,4,6-Penta-*O*-acetyl- β -D-glucopyranose (420 mg, 1.08 mmol), 4-nitrophenol (210 mg, 1.51 mmol) and boron trifluoride diethyl etherate (180 μ L, 1.40 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (10 mL) at 0 °C. Column chromatography (8:2 hexanes/EtOAc) afforded **11a** as a white powder (347 mg, 68%). Characterization data is consistent with that previously reported in the literature². ¹H NMR (500 MHz, CDCl₃): δ 8.23-8.20 (m, 2H), 7.09-7.06 (m, 2H), 5.16-5.11 (m, 3H), 5.09 (d, *J* = 3.7 Hz, 1H), 4.28 (dd, *J* = 12.3, 5.2 Hz, 1H), 4.18 (dd, *J* = 12.3, 2.3 Hz, 1H), 3.86-3.82 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 170.2, 169.7, 169.3, 160.8, 140.9, 124.7, 115.5, 98.1, 74.7, 73.9, 71.2, 68.1, 61.9, 20.9, 20.7, 20.6, 20.5. LRMS (ESI): *m/z* calcd. for C₂₀H₂₂NO₁₂ [M-H]⁻ 468.4; found, 468.2.

p-Nitrophenyl -β-D-glucopyranoside (11)

Compound **11a** (250 mg, 0.53 mmol) was dissolved in a solution of sodium methoxide in methanol (4 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The product was purified by column chromatography (4:1:1:1 EtOAc/ACN/H₂O/MeOH) to afford **11** as a white powder (128 mg, 80%). ¹H NMR (400 MHz, D₂O): δ 8.28-8.24 (m, 2H), 7.26-7.22 (m, 2H), 5.27 (d, *J* = 7.7 Hz, 1H), 3.93 (dd, *J* = 12.3, 2.1 Hz, 1H), 3.75 (dd, *J* = 12.3, 5.7 Hz, 1H), 3.71-3.67 (m, 1H), 3.63-3.61 (m, 2H), 3.51 (t, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 161.7, 142.6, 126.1, 116.4, 99.4, 76.3, 75.4, 72.7, 69.3, 60.4. LRMS (ESI): *m/z* calcd. for C₁₂H₁₄NO₈ [M-H]⁻ 300.3; found, 300.5. LRMS (ESI): *m/z* calcd. for C₂₄H₂₈N₂O₁₆ [M-H]⁻ Dimer 601.5; found, 601.0.

p-Fluorophenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (12a)

Compound **12a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (500 mg, 1.28 mmol), 4-fluorophenol (200 mg, 1.58 mmol) and boron trifluoride diethyl etherate (803 μ L, 6.4 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (6 mL) at 0 °C. Column chromatography (3:2 hexanes/ethyl acetate) afforded **12a** as a white powder (416 mg, 77%). Characterization data is consistent with that previously reported¹². ¹H NMR (400 MHz, CDCl₃): δ 7.10-7.08 (m, 2H), 6.91-6.88 (m, 2H), 5.30-5.25 (m, 2H), 5.16 (t, *J* = 9.7 Hz, 1H), 5.03-5.01 (m, 1H), 4.29 (dd, *J* = 12.2, 5.2 Hz, 1H), 4.17 (dd, *J* = 12.2, 2.5 Hz, 1H), 3.83 (ddd, *J* = 10.0, 5.3, 2.5 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 170.2, 169.4, 169.2, 160.0, 157.6, 152.9, 152.9, 118.8, 118.7, 116.1, 115.9, 99.8, 72.6, 72.1, 71.2, 68.2, 61.9, 20.7, 20.6, 20.6, 20.6. LRMS (ESI): *m/z* calcd for C₂₀H₂₇FNO₁₀ [M+NH₄]⁺ 460.5; found, 460.2.

p-Fluorophenyl-β-D-glucopyranoside (12)

Compound **12a** (198 mg, 0.45 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **12** as a white powder (120 mg, 98%). ¹H NMR (400 MHz, D₂O): δ 7.15-7.09 (m, 4H), 5.06 (d, *J* = 7.5 Hz, 1H), 3.93 (dd, *J* = 12.4, 2.3 Hz, 1H), 3.75 (dd, *J* = 12.4, 5.6 Hz, 1H), 3.63-3.53 (m, 3H), 3.52-3.47 (m, 1H). ¹³C NMR (101 MHz, D₂O): δ 152.7, 118.2, 118.2, 116.2, 116.0, 100.9, 76.1, 75.5, 72.9, 69.4, 60.5. LRMS (ESI): *m/z* calcd. for C₁₂H₁₅FNaO₆ [M+Na]⁺ 297.2; found, 297.1.

p-Bromophenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (13a)

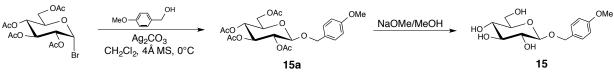
Compound **13a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (1.5 g, 3.84 mmol), 4-bromophenol (798 mg, 4.61 mmol) and boron trifluoride diethyl etherate (723 μ L, 5.76 mmol) with

4 Å MS in anhydrous CH₂Cl₂ (15 mL) at 0 °C. Column chromatography (4:1 hexanes/ethyl acetate) afforded **13a** as a white powder (1.33 g, 69%). Characterization data is consistent with that previously reported¹³. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.39 (m, 2H), 6.90-6.86 (m, 2H), 5.31-5.23 (m, 2H), 5.16 (t, *J* = 9.6 Hz, 1H), 5.03 (d, *J* = 7.6 Hz, 1H), 4.28 (dd, *J* = 12.3, 5.4 Hz, 1H), 4.16 (dd, *J* = 12.3, 2.4 Hz, 1H), 3.84 (ddd, *J* = 10.0, 5.4, 2.5 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 170.2, 169.4, 155.8, 132.5, 118.8, 115.9, 99.1, 72.6, 72.1, 71.1, 68.2, 61.9, 20.8, 20.8, 20.7, 20.6. LRMS (ESI): *m/z* calcd. for C₂₀H₂₇BrNO₁₀ [M+NH₄]⁺ 520.2; found, 520.0.

p-Bromophenyl-β-D-glucopyranoside (13)

Compound **13a** (200 mg, 0.40 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **13** as a white powder (123 mg, 92%). ¹H NMR (400 MHz, D₂O): δ 7.54-7.50 (m, 2H), 7.07-7.03 (m, 2H), 5.09 (d, *J* = 7.5 Hz, 1H), 3.92 (dd, *J* = 12.5, 2.3 Hz, 1H), 3.74 (dd, *J* = 12.5, 5.7 Hz, 1H), 3.64-3.53 (m, 3H), 3.49 (dd, *J* = 9.7, 8.9 Hz, 1H). ¹³C NMR (101 MHz, D₂O): δ 155.7, 132.6, 118.5, 115.0, 100.2, 76.1, 75.5, 72.9, 69.4, 60.5. LRMS (ESI): *m/z* calcd. for C₁₂H₁₅BrNaO₆ [M+Na]⁺ 357.0; found, 357.0.

m-Methoxyphenyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (14a)


Compound **14a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl- β -D-glucopyranose (500 mg, 1.28 mmol), 3-methoxyphenol (222 mg, 1.79 mmol) and boron trifluoride diethyl etherate (803 μ L, 6.4 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (10 mL) at 0 °C. Column chromatography (3:2 hexanes/EtOAc) afforded **14a** as a white powder (162 mg, 28%). ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.17 (m, 1H), 6.64-6.56 (m, 3H), 5.32-5.24 (m, 2H), 5.16 (t, *J* = 9.7 Hz, 1H), 5.08 (d, *J* = 7.7 Hz, 1H), 4.28 (dd, *J* = 12.3, 5.5 Hz, 1H), 4.17 (dd, *J* = 12.2, 2.4 Hz, 1H), 3.86 (ddd, *J* = 10.0, 5.5, 2.5 Hz, 1H), 3.78 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 170.2, 169.4, 169.3, 160.8, 158.0, 130.0, 108.9, 108.6, 103.6, 99.0, 72.7, 72.0, 71.1, 68.3, 62.0, 55.4, 30.9, 20.6, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₁H₃₀NO₁₁ [M+NH₄]⁺ 475.5; found, 472.1.

m-Methoxyphenyl-β-D-glucopyranoside (14)

Compound **14a** (162 mg, 0.33 mmol) was dissolved in a solution of sodium methoxide in methanol (5 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **14** as a white powder (90 mg, 95%). ¹H NMR (400 MHz, D₂O): δ 7.34-7.30 (m, 1H), 6.78-6.75 (m, 3H), 5.12 (d, *J* =

7.2 Hz, 1H), 3.93 (dd, J = 12.1, 1.2 Hz, 1H), 3.82 (s, 3H), 3.76-3.72 (m, 1H), 3.65-3.54 (m, 3H), 3.51-3.46 (m, 1H). ¹³C NMR (101 MHz, D₂O): δ 160.1, 157.7, 130.6, 109.0, 108.9, 102.9, 100.1, 76.2, 75.5, 72.9, 69.5, 60.6, 55.5. LRMS (ESI): *m/z* calcd. for C₁₃H₂₂NO₇ [M+NH₄]⁺ 304.4; found, 304.1.

Synthesis of p-methoxybenzyl-glucopyranoside 15:

Figure S6. Synthesis of β -PMB-Glc (15).

p-Methoxybenzyl-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranoside (15a)

To a mixture of 4-methoxybenzyl alcohol (109 mg, 0.79 mmol), Ag₂CO₃ (250 mg, 0.91 mmol) and 4 Å MS in anhydrous CH₂Cl₂ (3 mL) stirring in the dark under Ar was added bromo-2,3,4,6-tetra-*O*-acetyl- β -D-glucopyranose¹⁴ (250 mg, 0.61 mmol) in anhydrous CH₂Cl₂ (2 mL) dropwise over 20 minutes. The reaction mixture was diluted with CH₂Cl₂ and filtered through Celite®, then washed with sodium bicarbonate, water, saturated brine, then dried over MgSO₄ and concentrated. Flash column chromatography over a gradient (8:2 hexanes/EtOAc to 3:2 hexanes/EtOAc) afforded **15a** as a white solid (88 mg, 31%). ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.19 (m, 2H), 6.89-6.85 (m, 2H), 5.18-5.07 (m, 2H), 5.03 (dd, *J* = 9.5, 8.0 Hz, 1H), 4.82 (d, *J* = 11.9 Hz, 1H), 4.56 (d, *J* = 11.9 Hz, 1H), 4.51 (d, *J* = 7.9 Hz, 1H), 4.27 (dd, *J* = 12.3, 4.7 Hz, 1H), 4.17 (dd, *J* = 12.3, 2.4 Hz, 1H), 3.81 (s, 3H), 3.66 (ddd, *J* = 9.7, 4.7, 2.5 Hz, 1H), 2.11 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 170.3, 169.4, 169.3, 159.5, 129.5, 128.5, 113.9, 98.8, 72.8, 71.8, 71.3, 70.4, 68.4, 62.0, 55.3, 20.8, 20.7, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₂H₃₂NO₁₁ [M+NH₄]⁺ 486.5; found, 486.1.

p-Methoxybenzyl-β-D-glucopyranoside (15)

Compound **15a** (70 mg, 0.15 mmol) was dissolved in a solution of sodium methoxide in methanol (3 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The product was purified by recrystallization in hot ethyl acetate to afford **15** as a white powder (34 mg, 76%). ¹H NMR (400 MHz, D₂O): δ 7.44-7.41 (m, 2H), 7.05-7.01 (m, 2H), 4.88 (d, *J* = 11.3 Hz, 1H), 4.70 (d, *J* = 11.4 Hz, 1H), 4.50 (d, *J* = 8.0 Hz, 1H), 3.92 (dd, *J* = 12.3, 2.0 Hz, 1H), 3.85 (s, 3H), 3.73 (dd, *J* = 12.3, 5.7 Hz, 1H), 3.47-3.38 (m, 3H), 3.28 (dd, *J* = 9.0, 8.1 Hz, 1H). ¹³C NMR (101 MHz, 102 MHz, 10

D₂O): δ 158.9, 130.6, 129.1, 114.1, 100.9, 75.92, 75.82, 73.1, 71.1, 69.7, 60.8, 55.4. LRMS (ESI): *m/z* calcd. for C₁₄H₂₄NO₇ [M+NH₄]⁺ 318.3; found, 318.2.

Synthesis of α -linked p-methoxyphenyl-glucopyranoside 16:

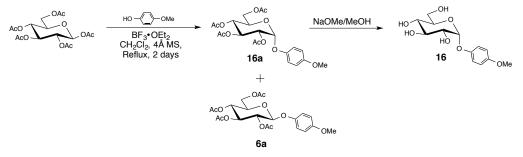
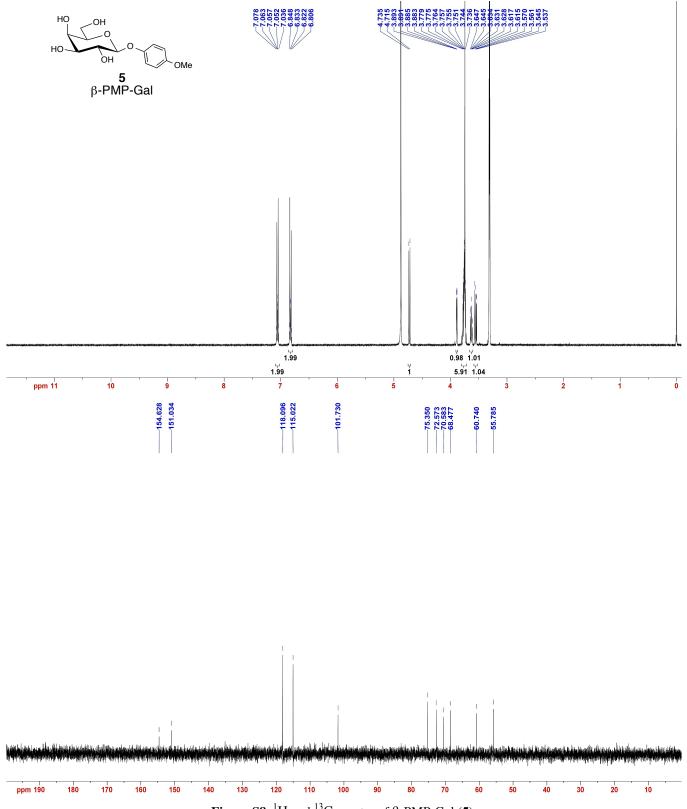


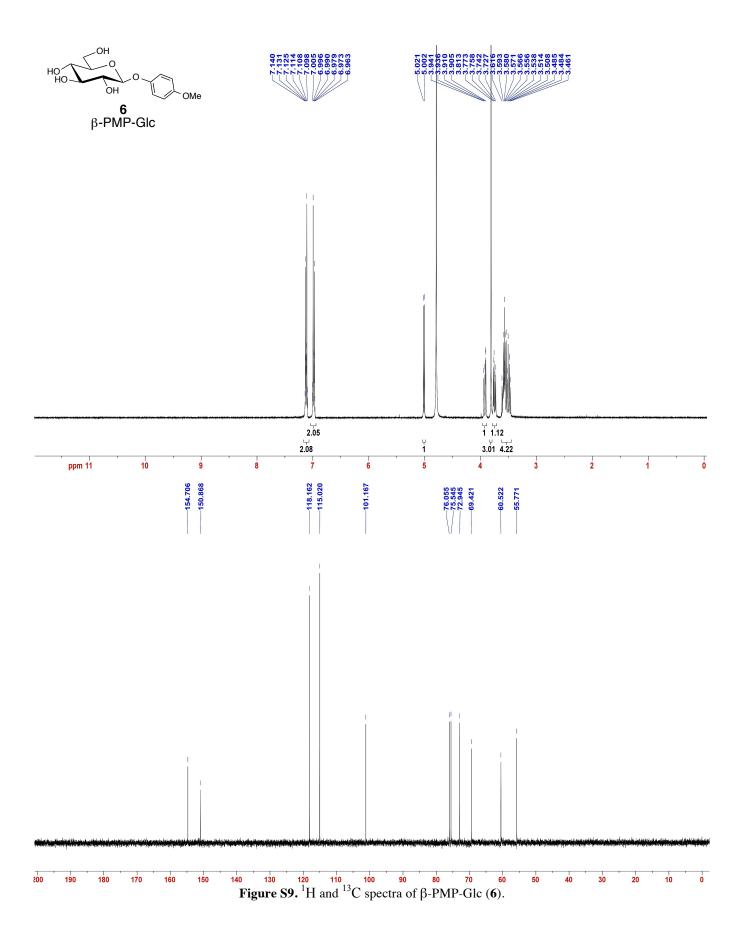
Figure S7. Synthesis of α -PMP-Glc (16).

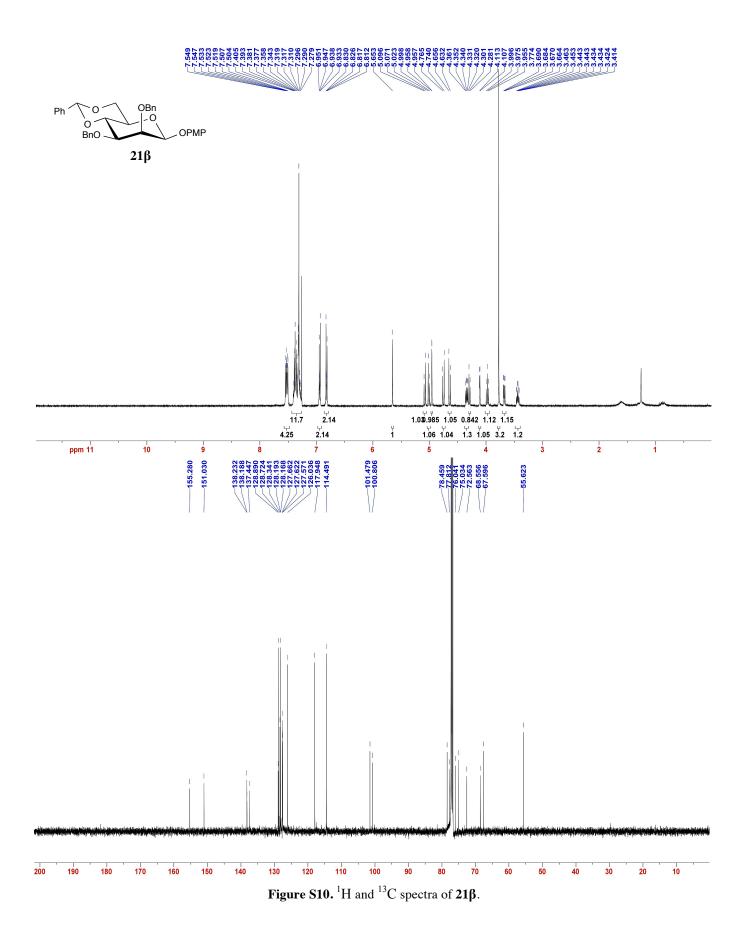
p-Methoxyphenyl-2,3,4,6-tetra-*O*-acetyl-α-D-glucopyranoside (16a)

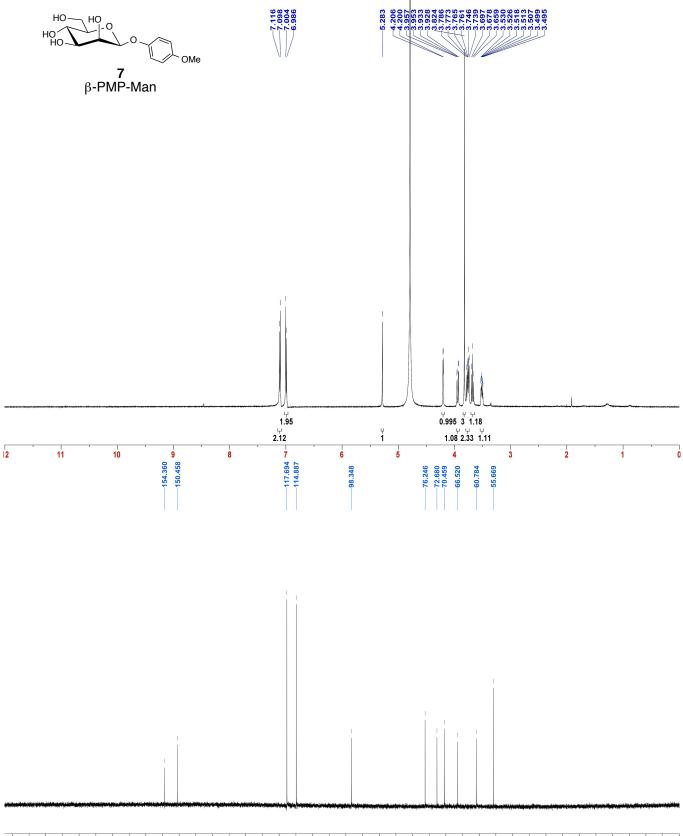
Compound **16a** was prepared in a similar manner as **6a** from 1,2,3,4,6-penta-*O*-acetyl-β-D-glucopyranose (4 g, 10.3 mmol), 4-methoxyphenol (1.78 g, 14.4 mmol) and boron trifluoride diethyl etherate (2.6 mL, 20.5 mmol) with 4 Å MS in anhydrous CH₂Cl₂ (60 mL). The reaction mixture was refluxed for 2 days, and following quenching, washing and concentration the crude mixture showed a 1:1.6 ratio of α:β-linked products (**16a:6a**). Column chromatography (4:1 hexanes/EtOAc) afforded **16a** as a white powder (1.43 g, 30%). Characterization data is consistent with that previously reported in the literature¹⁵. ¹H NMR (300 MHz, CDCl₃): δ 7.02-6.97 (m, 2H), 6.84-6.79 (m, 2H), 5.68 (dd, *J* = 10.0, 9.7 Hz, 1H), 5.61 (d, *J* = 3.6 Hz, 1H), 5.13 (dd, *J* = 10.1, 9.4 Hz, 1H), 5.00 (dd, *J* = 10.3, 3.7 Hz, 1H), 4.24 (dd, *J* = 12.1, 4.5 Hz, 1H), 4.15 (ddd, *J* = 10.2, 4.5, 2.0 Hz, 1H), 4.06 (dd, *J* = 12.1, 2.2 Hz, 1H), 3.76 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 170.6, 170.3, 169.4, 169.3, 158.7, 151.5, 118.7, 115.3, 96.2, 72.2, 71.4, 71.2, 68.3, 61.9, 55.8, 20.7, 20.7, 20.6, 20.6. LRMS (ESI): *m/z* calcd. for C₂₁H₃₀NO₁₁ [M+NH₄]⁺ 472.5; found, 472.3.

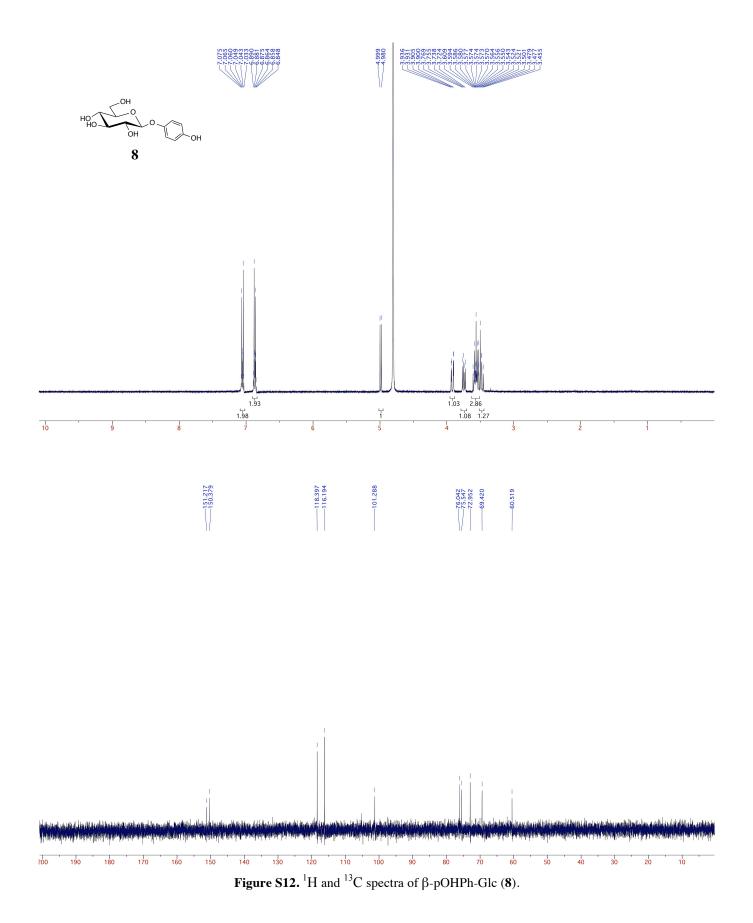

p-Methoxyphenyl-2,3,4,6-tetra-*O*-acetyl-α-D-glucopyranoside (16)

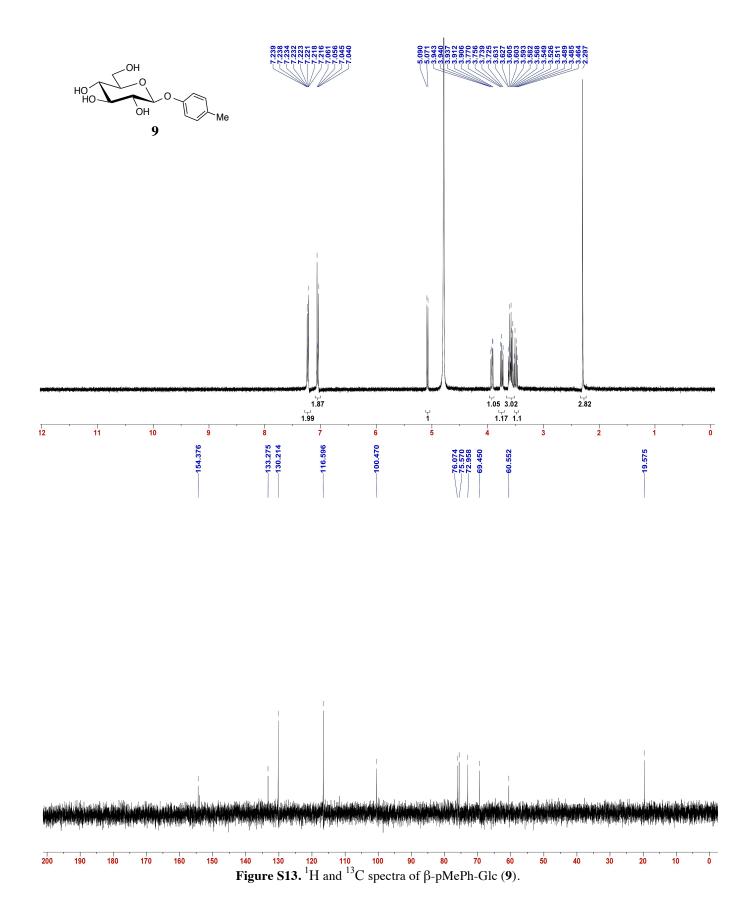
Compound **16a** (1.43 g, 3.15 mmol) was dissolved in a solution of sodium methoxide in methanol (15 mL) and stirred for one hour at room temperature. The solution was then neutralized with Amberlite® IR-120 (H⁺) ion-exchange resin, filtered and concentrated. The filtrate was concentrated and the product was lyophilized to yield **16** as a white powder (780 mg, 87%). ¹H NMR (300 MHz, D₂O): δ 7.17-7.12 (m, 2H), 7.02-6.96 (m, 2H), 5.52 (d, *J* = 3.7 Hz, 1H), 3.90 (t, *J* = 9.4 Hz, 1H), 3.84-3.76 (m, 3H), 3.81 (s, 3H), 3.70 (dd, *J* = 9.8, 3.8 Hz, 1H), 3.51 (t, *J* = 9.5 Hz, 1H). ¹³C NMR (126 MHz, D₂O): δ 154.5, 150.2, 118.8, 114.9, 98.0, 72.9, 72.3, 71.0, 69.2, 60.1, 55.6. LRMS (ESI): *m/z* calcd. for C₁₃H₁₇O₇ [M-H]⁻ 285.3; found, 285.1.

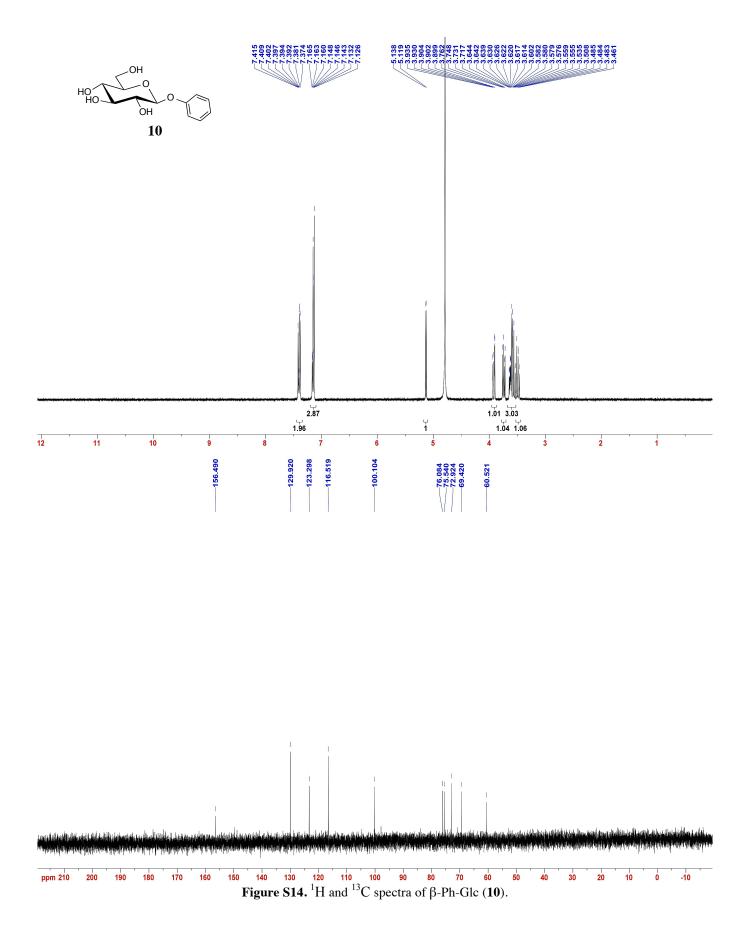

References

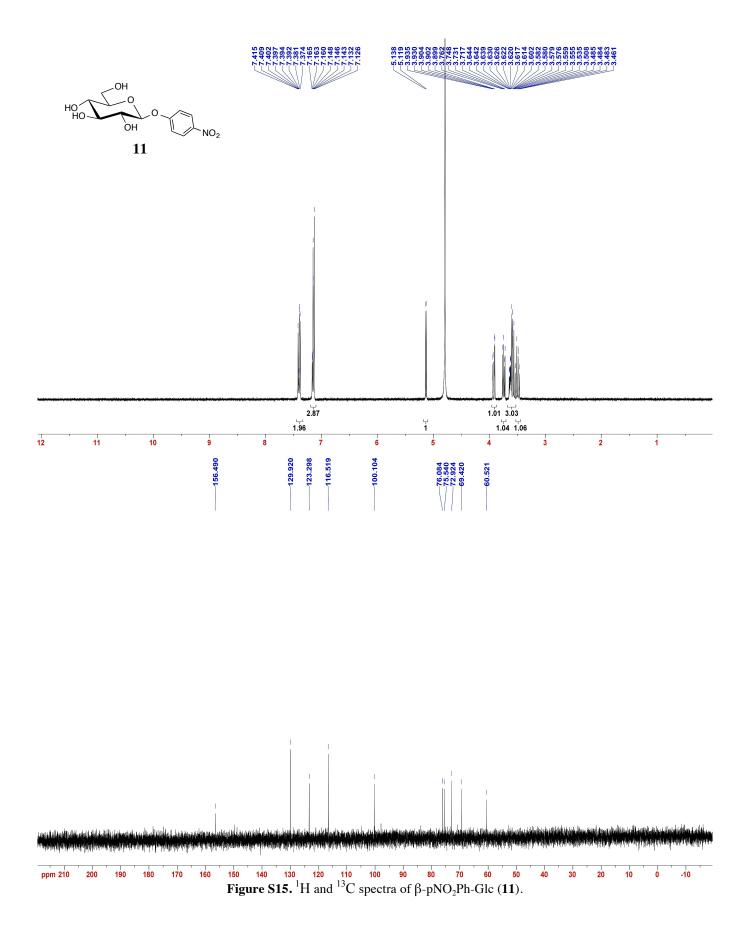

- 1. McGill, N. W. & Williams, S. J. 2,6-disubstituted benzoates as neighboring groups for enhanced diastereoselectivity in β -galactosylation reactions: Synthesis of β -1,3-linked oligogalactosides related to arabinogalactan proteins. J. Org. Chem. 74, 9388-9398 (2009).
- Smits, E., Engberts, J. B. F. N., Kellogg, R. M. & van Doren, H. A. Reliable method for the synthesis of aryl β-D-glucopyranosides, using boron trifluoride-diethyl ether as catalyst. J. Chem. Soc., Perkin Trans. 1, 2873-2877 (1996).
- Mukhopadhyay, B., Kartha, K. P. R., Russell, D. A. & Field, R. A. Streamlined synthesis of per-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars. J. Org. Chem. 69, 7758-7760 (2004).
- 4. Saksena, R., Zhang, J. & Kováč, P. Synthesis of 2-(trimethylsilyl)ethyl α-D-mannopyranosides revisited. J. *Carbohydr. Chem.* **21**, 453-470 (2002).
- Garegg, P. J., Kvarnström, I., Niklasson, A., Niklasson, G. & Svensson, S. C. T. Partial substitution of thioglycosides by phase transfer catalyzed benzoylation and benzylation. J. Carbohydr. Chem. 12, 933-953 (1993).
- 6. Crich, D. & Sun, S. Direct chemical synthesis of β -mannopyranosides and other glycosides via glycosyl triflates. *Tetrahedron* **54**, 8321-8348 (1998).
- 7. Crich, D. & Sun, S. Direct synthesis of β -mannopyranosides by the sulfoxide method. *J. Org. Chem.* **62**, 1198-1199 (1997).
- 8. Crich, D. & Sun, S. Formation of β -mannopyranosides of primary alcohols using the sulfoxide method. *J. Org. Chem.* **61**, 4506-4507 (1996).
- 9. Bubb, W. A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. *Conc. Magn. Reson. A* **19A**, 1-19 (2003).
- 10. Li, Z.-J., Cai, L.-N. & Cai, M.-S. Studies on glycosides. X. An alternate method for highly stereoselective synthesis of alkyl- β -D-glucopyranosides. *Synth. Commun.* **22**, 2121-2124 (1992).
- Desai, R. N. & Blackwell, L. F. Tempo-mediated regiospecific oxidation of glucosides to glucuronides. *Synlett* 2003, 1981-1984 (2003).
- Aich, U. & Loganathan, D. Stereoselective single-step synthesis and X-ray crystallographic investigation of acetylated aryl 1,2-trans glycopyranosides and aryl 1,2-cis C2-hydroxy-glycopyranosides. *Carbohydr. Res.* 341, 19-28 (2006).
- 13. Schwizer, D. *et al.* Antagonists of the myelin-associated glycoprotein: A new class of tetrasaccharide mimics. *Biorg. Med. Chem.* **14**, 4944-4957 (2006).
- Czechura, P., Tam, R. Y., Dimitrijevic, E., Murphy, A. V. & Ben, R. N. The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins. J. Am. Chem. Soc. 130, 2928-2929 (2008).
- 15. Alberti, A. *et al.* Reactivity of glucosyl radical in the presence of phenols. *Tetrahedron* **52**, 10241-10248 (1996).

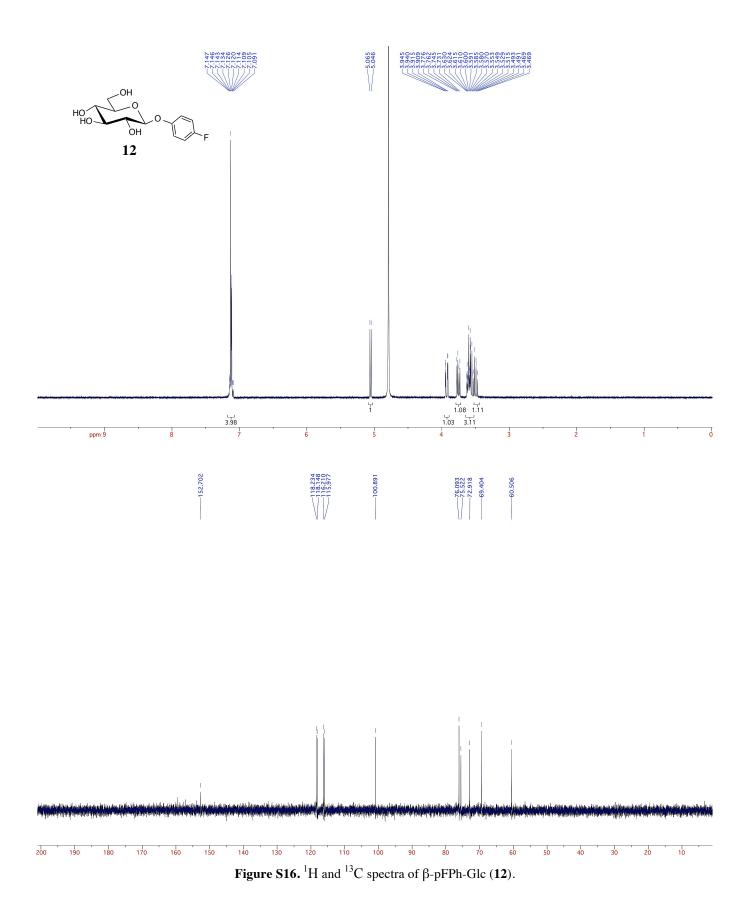

<u>Spectra</u>


Figure S8. ¹H and ¹³C spectra of β -PMP-Gal (5).






200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S11.** ¹H and ¹³C spectra of β-PMP-Man (7).



S20

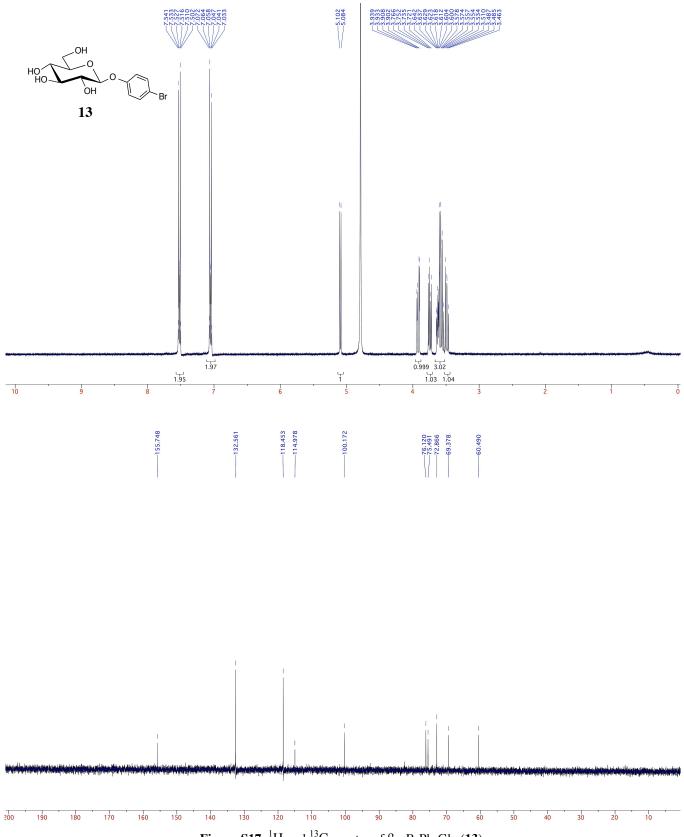


Figure S17. ${}^{1}H$ and ${}^{13}C$ spectra of β -pBrPh-Glc (13).

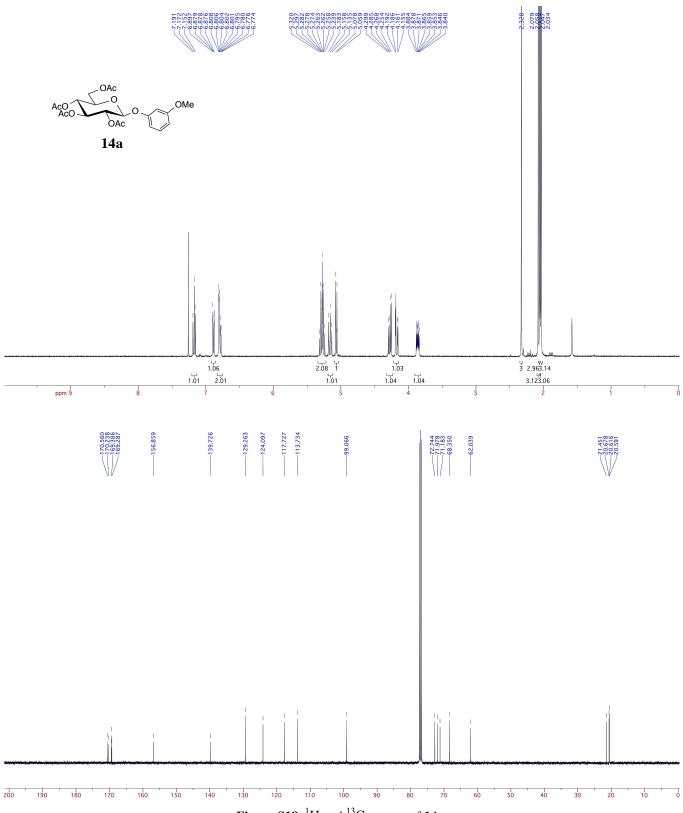


Figure S18. ${}^{1}H$ and ${}^{13}C$ spectra of 14a.

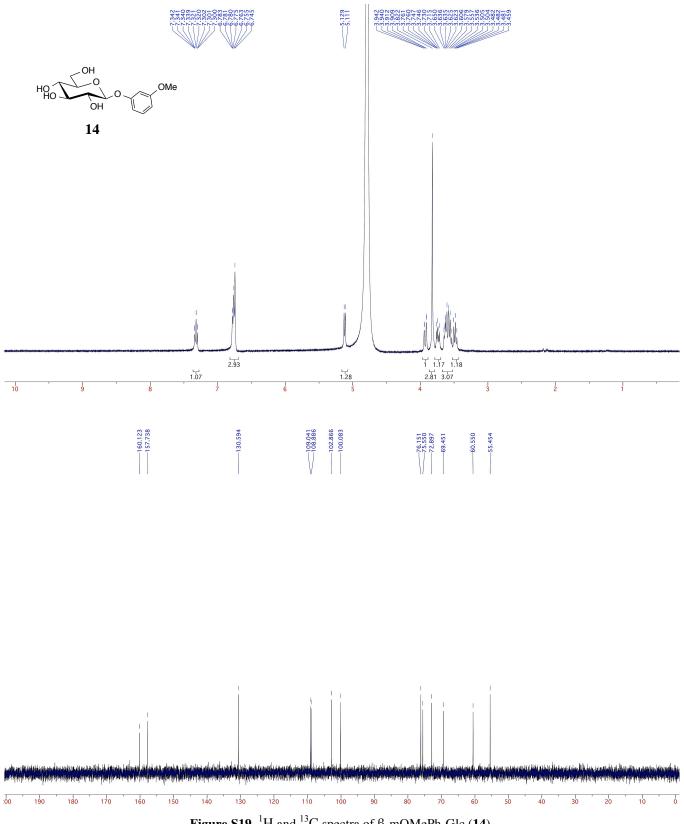
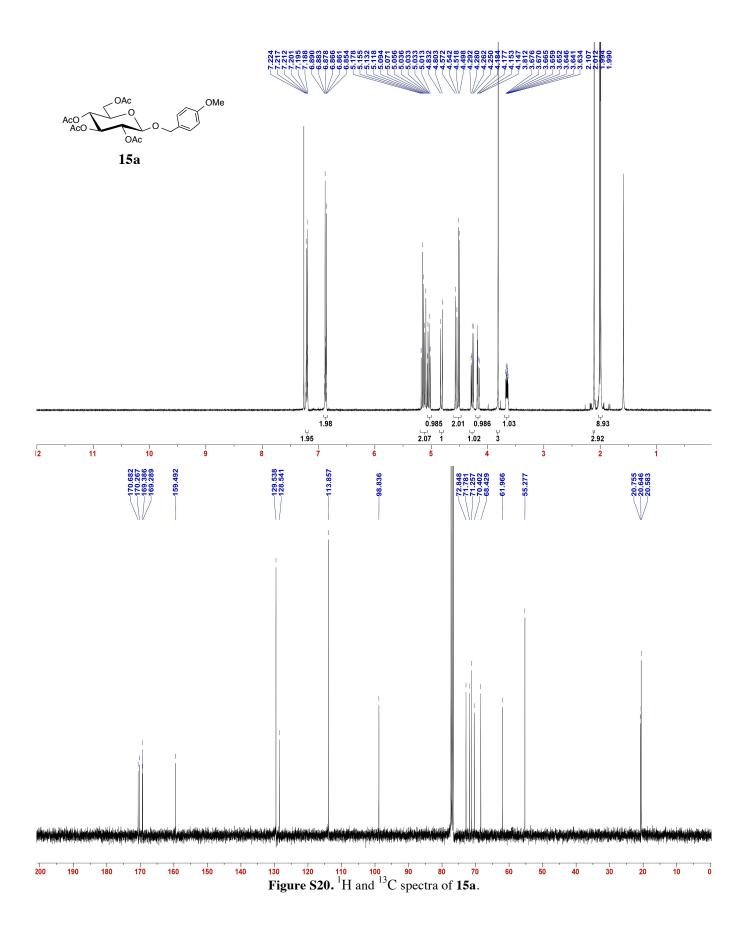
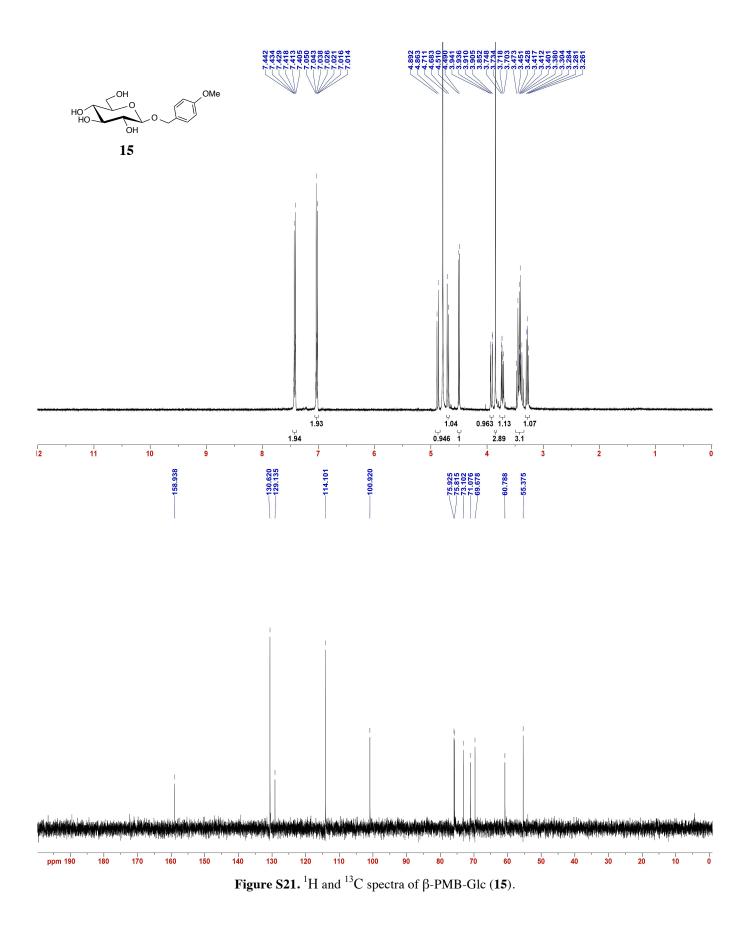
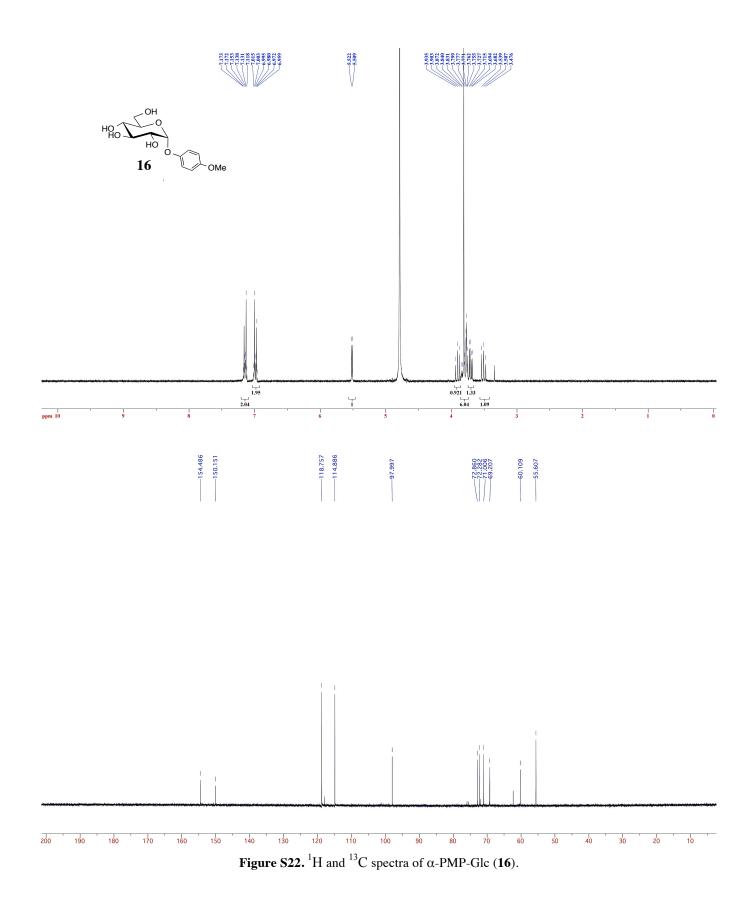





Figure S19. ¹H and ¹³C spectra of β -mOMePh-Glc (14).

S30