SUPPLEMENTARY INFORMATION

Supplementary Figure 1 (a) Temperature dependence of the rate of N₂ isotopic exchange reaction over various Ru catalysts at 26.7 kPa (${}^{15}N_2 : {}^{14}N_2 = 1 : 4$). (b) Temperature dependence of the rate of ammonia synthesis over various 1 wt% Ru-loaded catalysts at an atmospheric pressure (catalyst = 0.2 g, H₂:N₂ = 3:1, flow rate = 60 mL min⁻¹).

Supplementary Figure 2 The most stable geometrical configurations of Ru₄ cluster and Ru₄N₂ complex on C12A7:O^{2–} surfaces obtained using *ab initio* simulations. (A) The negative charge of the Ru₄ cluster supported on C12A7:O^{2–} is associated with the formation of Ru-O bonds. (B) N₂ molecule is adsorbed on Ru sites with the adsorption energy of 16 kJ mol⁻¹, and the resulting N-N bond length, d(N-N), is 1.19 Å. (C) N₂ dissociation proceeds with the energy gain of 24 kJ mol⁻¹, and the resulting N-N distance is 2.91 Å. ΔE corresponds to dissociative adsorption, i.e., the sum of the energy of the N₂ adsorption on C12A7-supported Ru and the energy gain due to N₂ dissociation. Q(R₄), Q(N₂), and Q(2N) represent Bader charge on Ru₄ cluster, N₂ molecule, and resulting two N atoms, respectively.

Supplementary Figure 3 The most stable geometrical configurations of Ru₄ cluster and Ru₄N₂ complex on C12A7: e^- surfaces obtained using *ab initio* simulations. (A) The negative charge of the Ru₄ cluster supported on C12A7: e^- is due to both the charge transfer from the substrate to Ru₄ and the charge density distribution associated with the formation of Ru-O bonds. (B) N₂ molecule is adsorbed on Ru sites with adsorption energy of 27 kJ mol⁻¹, and the resulting N-N bond length, d(N-N), is 1.23 Å. (C) N₂ dissociation proceeds with the energy gain of 70 kJ mol⁻¹, and the resulting N-N distance is 3.09 Å. ΔE corresponds to dissociative adsorption, i.e., the sum of the energy of the N₂ adsorption on C12A7-supported Ru and the energy gain due to N₂ dissociation.

Supplementary Figure 4 Dependence of NH₃ synthesis rate on the partial pressures of (a) N₂ and (b) H₂ under atmospheric pressure. α and β represent the reaction orders for N₂ and H₂ in Eq. 2, respectively.

Supplementary Figure 5 Temperature dependence of the rate of ammonia synthesis over various 1 wt% Ru-loaded catalysts at an atmospheric pressure (catalyst = 0.2 g, $H_2:N_2 = 3:1$, flow rate = 60 mL min⁻¹).

Supplementary Figure 6 Comparison of rates of ammonia synthesis with H₂ (open circles) and D₂ (filled circles) over (a) 1wt% Ru-Cs/MgO and (b) 1wt% Ru/C12A7:e⁻. (catalyst = 0.025 g, H₂(or D₂):N₂ = 3:1, flow rate = 60 mL min⁻¹).

Supplementary Figure 7 H₂ TPA profiles of a) Ru/C12A7:e⁻ and b) C12A7:e⁻. The TPA experiment was performed with a dilute mixture of H₂ (5%) in Ar using a total flow of 10 ml min⁻¹ and a heating rate of 2 K min⁻¹.

Supplementary Figure 8 (a) Reaction pathway 1: H_2 is dissociated on Ru/C12A7:e⁻ to produce two OH (formally H⁺ state) species (homolytic dissociation). (b) Reaction pathway 2: H_2 is dissociated on Ru/C12A7:e⁻ to produce OH (formally H⁺ state) and H⁻ ions (heterolytic dissociation).

Catalyst	Surface area (m ² g ⁻¹)	Catalytic activity		Ea
		(mmol g ⁻¹ h ⁻¹) ^a	(mmol m ⁻² h ⁻¹) ^b	(kJ mol ⁻¹) ^f
Ru/C12A7:e ⁻	1.0	1.82	1.82	49
Ru/C12A7:O ²⁻	1.0	0.25	0.25	104
Ru-Cs/MgO	12	1.72	0.14	99
Ru/CA	1.2	0.15	0.13	118

Supplementary Table 1 Catalytic performance of various Ru catalyst for ammonia synthesis reaction at 633 K

^{*a,b*}Reaction conditions: catalyst = 0.2 g, $H_2:N_2 = 3:1$, flow rate = 60 mL min⁻¹, pressure = 0.1 MPa. Catalytic activity was described as ammonia synthesis rate per (a) catalyst weight or per (b) surface area.